Разное

Функции простых углеводов в клетке: функция простых углеводов в клетке: 1)каталитическая: 2)энергетическая, 3)хранение

Содержание

функция простых углеводов в клетке: 1)каталитическая: 2)энергетическая, 3)хранение

Определите правильную последовательность протекания энергетического обмена. 1 Образуется углекислый газ и вода. 2 Происходит окисление глюкозы. 3 При … нимает участие кислород. 4 Гидролизуются высокомолекулярные органические вещества. 5 Образуется пировиноградная кислота.

Установіть відповідність між послідовністю нуклеотидів у 1 та 2 ланцюгжку ДНК​

На фрагменті одного ланцюга ДНК нуклеотиди розташовані в послідовності: B Т — А — Г — Т — Г — А — А — Ц — Г — А — Т — Г. Оберіть схему структури друго … го ланцюга молекули ДНК.​

Запишіть основні способи регуляції температури тіла у пойкілотерних та гомойтерних організмів(Дуже прошу допомогти!!!!

СРОЧНО!!!!! 1. Сколько хроматид содержит пара гомологичных хромосом в метафазе митоза: А) 2; б) 4; В) 8. 2. Какие из перечисленных клеток делятся мито … зом: А) гаметы; Б) яйцеклетки; В) клетки кожи человека.

3. Биологическое значение митоза заключается в: А) образовании половых клеток; Б) сохранении постоянства числа хромосом в клетках; В) обеспечении генетического разнообразия организмов. 4. Наиболее продолжительна: А) профаза; Б) метафаза; В) интерфаза; Г) телофаза. 5. Сколько длится митоз: А) от 0,5 до 3 часов; Б) от 1.5 до 4 часов; В) от 10 до 20 минут. 6. В какой фазе митоза хромосомы беспорядочно расположены в цитоплазме клетки: А) метафазе; Б) телофазе; В) профазе. 7. Чем соединены сестринские хроматиды: А) центромерой; Б) центросомой; В) центростромой. 8. В результате митоза, генетический материал располагается в клетке между: А) материнскими клетками; Б) половыми клетками; В) дочерними клетками. 9. Какой фазой заканчивается митоз: А) метафазой; Б) анафазой; В) профазой; Г) телофазой.

У тополі чорні дрібні плоди-коробочки — домінантна ознака, тривалий вегетаційний період — рецесивна, короткий вегетаційний період — домінантна, великі … коробочки — рецесивна. Схрестили рослину з коротким вегетаційним періодом і дрібними плодами та рослину з тривалим вегетаційним періодом і великими плодами.

У F1 успадковуються проміжний вегетаційний період і проміжні розміри плоду. Визначте генотипи батьківських рослин і гібридів в обох поколіннях. Які фенотипи матиме потомство у F2?

помогите пжпжпжпжпж срочно нужно ​

Помогите пожалуйста срочно 1.Несколько учащихся исследовали влияние активность амилазы на разложение крахмала в растворах с различными значениями рН с … реды. Их результаты, таблица 1.1, показывают время в минутах, затраченное на разложение крахмала амилазой в растворах с различной рН средой. (a) Укажите зависимую и незавсимую переменные в данном эксперименте. зависимая________________________________________________________________ независимая______________________________________________________________ (b) Используя данные таблицы 1.1, нарисуйте график, иллюстрирующий зависимость рН среды раствора от времени разложения крахмала амилазой. 2. (а) Укажите оптимальную рН активности амилазы. __________________________________________________________________________________ (в) Опишите и объясните влияние рН на активность амилазы.

_______________________________________________________________________3. Объясните два способа, которыми это исследование можно было бы улучшить. ________________________________________________________________________ ДАМ 25 БАЛЛОВ ПЖ ПОМОГИТЕ ​

описать двугорбого верблюда по всем критериям вида кроме гинетического (морфологический, анатомический, физиологический, биохимический, экологический, … географический, этологический, репродуктивный)

ПОМОГИТЕ ПОЖАЛУЙСТА Листья с деревьев и кустарников опадают осенью не все сразу. Понаблюдайте и установите, как опадают листья разных растений- с осн … ованием веток или с их вершин. Чем это можно объяснить.

Функции углеводов в клетке таблица. Каковы функции углеводов в клетке? Строение и функции липидов

1. Какие вещества, относящиеся к углеводам, вам известны?

Ответ. Углеводы (сахариды) — общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Углеводы делятся на две группы: простые и сложные. Простые углеводы — глюкоза и фруктоза, дисахарид – сахароза, полисахариды – крахмал и целлюлоза

2. Какую роль играют углеводы в живом организме?

Ответ. Углеводы в живом организме выполняют ряд функций: энергетическую, строительную, защитную, запасающую функции.

Вопросы после §9

1. Какие углеводы называют моно-, олиго– и полисахаридами?

Ответ. Моносахариды (от греч. monos – один) – бесцветные кристаллические вещества, легко растворимые в воде и имеющие сладкий вкус. Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза. Рибоза входит в состав РНК, АТФ, витаминов группы В, ряда ферментов. Дезоксирибоза входит в состав ДНК. Глюкоза (виноградный сахар) является мономером полисахаридов (крахмала, гликогена, целлюлозы). Она есть в клетках всех организмов. Фруктоза входит в состав олигосахаридов, например сахарозы. В свободном виде содержится в клетках растений.

Галактоза также входит в состав некоторых олигосахаридов, например лактозы.

Олигосахариды (от греч. oligos – немного) образованы двумя (тогда их называют дисахариды) или несколькими моносахаридами, связанными ковалентно друг с другом с помощью гликозидной связи. Большинство олигосахаридов растворимы в воде и имеют сладкий вкус. Из олигосахаридов наиболее широко распространены дисахариды: сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар).

Полисахариды (от греч. poly – много) являются полимерами и состоят из неопределённо большого (до нескольких сотен или тысяч) числа остатков молекул моносахаридов, соединённых ковалентными связями. К ним относятся крахмал, гликоген, целлюлоза, хитин и др. Интересно, что крахмал, гликоген и целлюлоза, играющие важную роль в живых организмах, построены из мономеров глюкозы, но связи в их молекулах различны. Кроме того, у целлюлозы цепи не ветвятся, а у гликогена они ветвятся сильнее, чем у крахмала.

2. Какие функции выполняют углеводы в живых организмах?

Ответ. Основная функция углеводов – энергетическая. При их ферментативном расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма. При полном расщеплении 1 г углеводов освобождается 17,6 кДж.

Углеводы выполняют запасающую функцию. При избытке они накапливаются в клетке в качестве запасающих веществ (крахмал, гликоген) и при необходимости используются организмом как источник энергии. Усиленное расщепление углеводов происходит, например, при прорастании семян, интенсивной мышечной работе, длительном голодании.

Очень важной является структурная, или строительная, функция углеводов. Они используются в качестве строительного материала. Так, целлюлоза благодаря особому строению нерастворима в воде и обладает высокой прочностью. В среднем 20–40 % материала клеточных стенок растений составляет целлюлоза, а волокна хлопка – почти чистая целлюлоза, и именно поэтому они используются для изготовления тканей.

Хитин входит в состав клеточных стенок некоторых простейших и грибов. В качестве важного компонента наружного скелета хитин встречается у отдельных групп животных, например у членистоногих.

Углеводы выполняют защитную функцию. Так, камеди (смолы, выделяющиеся при повреждении стволов и веток растений, например слив, вишен), препятствующие проникновению в раны болезнетворных микроорганизмов, являются производными моносахаридов.

Твердые клеточные стенки одноклеточных и хитиновые покровы членистоногих, в состав которых входят углеводы, также выполняют защитные функции.

3. Почему углеводы считаются главными источниками энергии в клетке?

Ответ. Углеводы считаются главными источниками энергии в клетке потому, что при их расщеплении выделяется достаточно количества энергии. Углеводы доступны организму. Расщепление углеводов происходит быстрее, чем остальных органических веществ.

Обычно в клетке животных организмов содержится около 1 % углеводов, в клетках печени их содержание доходит до 5 %, а в растительных клетках – до 90 %.

Подумайте и объясните почему.

Ответ. В растительных клетках — большой процент углеводов, т. Так как растения автотрофы и в их клетках постоянно идёт процесс фотосинтеза углеводов.

В печени животных более высокое содержание углеводов, т. к. в её клетках находится запас глюкозы в виде гликогена.

Углеводы являются производными многоатомных спиртов и состоят из углерода, водорода и кислорода. Химики определяют эти соединения как многоатомные оксиальдегиды или многоатомные оксикетоны. Название «углеводы» хотя и является устаревшим, но и по сей день широко используется, в том числе и в научной литературе. Своё название этот класс соединений получил потому, что у большинства из них соотношение водорода и кислорода в молекуле такое же, как и в воде. Общая формула углеводов Cn(h30)m, где n не меньше 3. Однако не все соединения, относящиеся к классу углеводов, соответствуют данной формуле.

Выясните, какие это соединения.

Ответ. Общая формула углеводов Сn(h3O)m. Однако с развитием химии углеводов обнаружены соединения, состав которых не отвечает приведенной общей формуле,но обладающие свойствами веществ своего класса(например,C5h20O4-Дезоксирибоза). Еще одним примером может служить молочная кислота С3Н6 О3.

Вступление.

  1. Строение,свойства и функции белков.

    Обмен белков.

    Углеводы.

    Строение,свойства и функции углеводов.

    Обмен углеводов.

    Строение,свойства и функции жиров.

10)Обмен жиров.

Список литературы

ВСТУПЛЕНИЕ

Нормальная деятельность организма возможна при непрерывном поступлении пищи. Входящие в состав пищи жиры, белки, углеводы, минеральные соли, вода и витамины необходимы для жизненных процессов организма.

Питательные вещества являются как источником энергии, покрывающем расходы организма, так и строительным материалом, который используется в процессе роста организма и воспроизведения новых клеток, замещающих отмирающие. Но питательные вещества в том виде, в каком они употребляются в пищу, не могут всосаться и быть использованными организмом.

Только вода, минеральные соли и витамины всасываются и усваиваются в том виде, в каком они поступают.

Питательными веществами называются белки, жиры и углеводы. Эти вещества являются необходимыми составными частями пищи. В пищеварительном тракте белки, жиры и углеводы подвергаются как физическим воздействиям (измельчаются и перетираются), так и химическим изменениям, которые происходят под влиянием особых веществ — ферментов, содержащихся в соках пищеварительных желёз. Под влиянием пищеварительных соков питательные вещества расщепляются на более простые, которые всасываются и усваиваются организмом.

БЕЛКИ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

«Во всех растениях и животных присутствует некое вещество, которое без сомнения является наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна. Это вещество я наименовал — протеин». Так писал еще в 1838 году голландский биохимик Жерар Мюльдер, который впервые открыл существование в природе белковых тел и сформулировал свою теорию протеина. Слово «протеин» (белок) происходит от греческого слова «протейос», что означает «занимающий первое место». И в самом деле, все живое на земле содержит белки. Они составляют около 50% сухого веса тела всех организмов. У вирусов содержание белков колеблется в пределах от 45 до 95%.

Белки являются одними из четырех основных органических веществ живой материи (белки, нуклеиновые кислоты, углеводы, жиры), но по своему значению и биологическим функциям они занимают в ней особое место. Около 30% всех белков человеческого тела находится в мышцах, около 20% — в костях и сухожилиях и около 10% — в коже. Но наиболее важными белками всех организмов являются ферменты, которые, холя и присутствуют в их теле и в каждой клетке тела в малом количестве, тем не менее управляют рядом существенно важных для жизни химических реакций. Все процессы, происходящие в организме: переваривание пищи, окислительные реакции, активность желез внутренней секреции, мышечная деятельность и работа мозга регулируется ферментами. Разнообразие ферментов в теле организмов огромно. Даже в маленькой бактерии их насчитываются многие сотни.

Белки, или, как их иначе называют, протеины, имеют очень сложное строение и являются наиболее сложными из питательных веществ. Белки — обязательная составная часть всех живых клеток. В состав белков входят: углерод, водород, кислород, азот, сера и иногда фосфор. Наиболее характерно для белка наличие в его молекуле азота. Другие питательные вещества азота не содержат. Поэтому белок называют азотосодержащис веществом.

Основные азотосодержащие вещества, из которых состоят белки, — это аминокислоты. Количество аминокислот невелико — их известно только 28. Все громадное разнообразие содержащихся в природе белков представляет собой различное сочетание известных аминокислот. От их сочетания зависят свойства и качества белков.

При соединении двух или нескольких аминокислот образуется более сложное соединение — полипептид . Полипептиды, соединяясь, образуют еще более сложные и крупные частицы и в итоге — сложную молекулу белка.

Когда в пищеварительном тракте или в эксперименте белки расщепляются на более простые соединения, то через ряд промежуточных стадий (альбумоз и пептонов) они расщепляются на полипептиды и, наконец, на аминокислоты. Аминокислоты в отличие от белков легко всасываются и усваиваются организмом. Они используются организмом для образования собственного специфического белка. Если же вследствие избыточного поступления аминокислот их расщепление в тканях продолжается, то они окисляются до углекислого газа и воды.

Большинство белков растворяется в воде. Молекулы белков в силу их больших размеров почти не проходят через поры животных или растительных мембран. При нагревании водные растворы белков свертываются. Есть белки (например, желатина), которые растворяются в воде только при нагревании.

При поглощении пища сначала попадает в ротовую полость, а затем по пищеводу в желудок. Чистый желудочный сок бесцветен, имеет кислую реакцию. Кислая реакция зависит от наличия соляной кислоты, концентрация которой составляет 0,5%.

Желудочный сок обладает свойством переваривать пищу, что связано с наличием в нем ферментов. Он содержит пепсин — фермент, расщепляющий белок. Под влиянием пепсина белки расщепляются на пептоны и альбумозы. Железами желудка пепсин вырабатывается в неактивном виде, переходит в активную форму при воздействии на него соляной кислоты. Пепсин действует только в кислой среде и при попадании в щелочную среду становится не гативным.

Пища, поступив в желудок, более или менее длительное время задерживается в нем — от 3 до 10 часов. Срок пребывания пищи в желудке зависит от ее характера и физического состояния — жидкая она или твердая. Вода покидает желудок немедленно после поступления. Пища, содержащая большее количество белков, задерживается в желудке дольше, чем углеводная; еще дольше остается в желудке жирная пища. Передвижение пищи происходит благодаря сокращению желудка, что способствует переходу в пилорическую часть, а затем в двенадцатиперстную кишку уже значительно переваренной пищевой кашицы.

Пищевая кашица, поступившая в двенадцатиперстную кишку, подвергается дальнейшему перевариванию. Здесь на пищевую кашицу изливается сок кишечных желез, которыми усеяна слизистая оболочка кишки, а также сок поджелудочной железы и желчь. Под влиянием этих соков пищевые вещества — белки, жиры и углеводы — подвергаются дальнейшему расщеплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу.

Поджелудочный сок бесцветен и имеет щелочную реакцию. Он содержит ферменты, расщепляющие белки, углеводы и жиры.

Одним из основных ферментов является трипсин, находящийся в соке поджелудочной железы в недеятельном состоянии в виде трипсиногена. Трипсиноген не может расщеплять белки, если не будет переведен в активное состояние, т.е. в трипсин. Трипсиноген переходит в трипсин при соприкосновении с кишечным соком под влиянием находящегося в кишечном соке вещества энтерокиназы. Энтерокиназа образуется в слизистой оболочке кишечника. В двенадцатиперстной кишке действие пепсина прекращается, так как пепсин действует только в кислой среде. Дальнейшее переваривание белков продолжается уже под влиянием трипсина.

Трипсин очень активен в щелочной среде. Его действие продолжается и в кислой среде, но активность падает. Трипсин действует на белки и расщепляет их до аминокислот; он также расщепляет образовавшиеся в желудке пептоны и альбумозы до аминокислот.

В тонких кишках заканчивается переработка пищевых веществ, начавшаяся в желудке и двенадцатиперстной кишке. В желудке и двенадцатиперстной кишке белки, жиры и углеводы расщепляются почти полностью, только часть их остается непереваренной. В тонких кишках под влиянием кишечного сока происходит окончательное расщепление всех пищевых веществ и всасывание продуктов расщепления. Продукты расщепления попадают в кровь. Это происходит через капилляры, каждый из которых подходит к ворсинке, расположенной на стенке тонких кишков.

ОБМЕН БЕЛКОВ

После расщепления белков в пищеварительном тракте образовавшиеся аминокислоты всасываются в кровь. В кровь всасывается также незначительное количество полипептидов — соединений, состоящих из нескольких аминокислот. Из аминокислот клетки нашего тела синтезируют белок, причем белок, который образуется в клетках человеческого организма, отличается от потребленного белка и характерен для человеческого организма.

Образование нового белка в организме человека и животных идет беспрерывно, так как в течении всей жизни взамен отмирающих клеток крови, кожи, слизистой оболочки, кишечника и т. д. создаются новые, молодые клетки. Для того чтобы клетки организма синтезировали белок, необходимо, чтобы белки поступали с пищей в пищеварительный канал, где они подвергаются расщиплению на аминокислоты, и уже из всосавшихся аминокислот будет образован белок.

Если же, минуя пищеварительный тракт, ввести белок непосредственно в кровь, то он не только не может быть использован человеческим организмом, он вызывает ряд серьезных осложнений. На такое введение белка организм отвечает резким повышением температуры и некоторыми другими явлениями. При повторном введении белка через 15-20 дней может наступить даже смерть при параличе дыхания, резком нарушение сердечной деятельности и общих судорогах.

Белки не могут быть заменены какими-либо другими пищевыми веществами, так как синтез белка в организме возможен только из аминокислот.

Для того чтобы в организме мог произойти синтез присущего ему белка, необходимо поступление всех или наиболее важных аминокислот.

Из известных аминокислот не все имеют одинаковую ценность для организма. Среди них есть аминокислоты, которые могут быть заменены другими или синтезированными в организме из других аминокислот; наряду с этим есть и незаменимые аминокислоты, при отсутствии которых или даже одной из них белковый обмен в организме нарушается.

Белки не всегда содержат все аминокислоты: в одних белках содержится большее количество необходимых организму аминокислот, в других — незначительное. Разные белки содержат различные аминокислоты и в разных соотношениях.

Белки, в состав которых входят все необходимые организму аминокислоты, называются полноценными; белки, не содержащие всех необходимых аминокислот, являются неполноценными белками.

Для человека важно поступление полноценных белков, так как из них организм может свободно синтезировать свои специфические белки. Однако полноценный белок может быть заменен двумя или тремя неполноценными белками, которые, дополняя друг друга, дают в сумме все необходимые аминокислоты. Следовательно, для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались полноценные белки или набор неполноценных белков, по аминокислотному содержанию равноценных полноценным белкам.

Поступление полноценных белков с пищей крайне важно для растущего организма, так как в организме ребенка не только происходит восстановление отмирающих клеток, как у взрослых, но и в большом количестве создаются новые клетки.

Обычная смешанная пища содержит разнообразные белки, которые в сумме обеспечивают потребность организма в аминокислотах. Важна не только биологическая ценность поступающих с пищей белков, но и их количество. При недостаточном количестве белков нормальный рост организма приостанавливается или задерживается, так как потребности в белке не покрываются из-за его недостаточного поступления.

К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, относящейся к неполноценным белкам. Неполноценные белки — преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

УГЛЕВОДЫ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

Углеводы или сахариды — одна из основных групп органических соединений организма. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других веществ в растениях (органические кислоты, аминокислоты), а также содержатся в клетках всех других живых организмов. В животной клетке содержание углеводов колеблется в пределах 1-2%, в растительной оно может достигать в некоторых случаях 85-90% массы сухого вещества.

Углеводы состоят из углерода, водорода и кислорода, причем у большинства углеводов водород и кислород содержатся в том же соотношении, что и в воде (отсюда их название — углеводы). Таковы, например, глюкоза С6Н12О6 или сахароза С12Н22О11. В состав производных углеводов могут входить и другие элементы. Все углеводы делятся на простые (моносахариды) и сложные (полисахариды).

Среди моносахаридов по числу углеродных атомов различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С) и гептозы (7С). Моносахариды с пятью и более атомами углерода, растворяясь в воде, могут приобретать кольцевую структуру. В природе наиболее часто встречаются пентозы (рибоза, дезоксирибоза, рибулоза) и гексозы (глюкоза, фруктоза, галактоза). Рибоза и дезоксирибоза играют важную роль в качестве составных частей нуклеиновых кислот и АТФ. Глюкоза в клетке служит универсальным источником энергии. С превращением моносахаридов связаны не только обеспечение клетки энергией, но и биосинтез многих других органических веществ, а также обезвреживание и выведение из организма ядовитых веществ, проникающих извне или образующихся в процессе обмена веществ, например, при распаде белков.

Ди — и полисахариды образуются путем соединения двух и более моносахаридов, таких, как глюкоза галактоза маноза, арабиноза или ксилоза. Так, соединяясь между собой с выделением молекулы воды, две молекулы моносахаридов образуют молекулу дисахарида. Типичными представителями этой группы веществ являются сахароза (тростниковый сахар), мальтаза (солодовый сахар), лактоза (молочный сахар). Дисахариды по своим свойствам близки к моносахаридам. Например, и те, и другие хорошо растворимы в воде и имеют сладкий вкус. К числу полисахаридов принадлежит крахмал, гликоген, целлюлоза, хитин, каллоза и др.

Основная роль углеводов связана с их энергетической функцией. При их ферментативном расщеплении и окислении выделяется энергия, которая используется клеткой. Полисахариды играют главным образом роль запасных продуктов и легко мобилизуемых источников энергии (например, крахмал и гликоген), а также используются в качестве строительного материала (целлюлоза, хитин). Полисахариды удобны в качестве запасных веществ по ряду причин: будучи нерастворимы в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что весьма важно при длительном хранении их в живой клетке: твердое, обезвоженное состояние полисахаридов увеличивает полезную массу продуктов запаса за счет экономии их объема. При этом существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями и другими микроорганизмами, которые, как известно, не могут заглатывать пищу, а всасывают вещества всей поверхностью тела. И наконец, при необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза.

ОБМЕН УГЛЕВОДОВ

Углеводы, как уже говорилось выше, играют очень важную роль в организме, являясь основным источником энергии. Углеводы поступают к нам в организм в виде сложных полисахаридов — крахмала, дисахаридов и моносахаридов. Основное количество углеводов поступает в виде крахмала. Расщепившись до глюкозы, углеводы всасываются и через ряд промежуточных реакций распадаются на углекислый газ и воду. Эти превращения углеводов и окончательное окисление сопровождаются освобождением энергии, которая и используется организмом.

Расщепление сложных углеводов — крахмала и солодового сахара, начинается уже в полости рта, где под влиянием птиалина и мальтазы крахмал расщепляется до глюкозы. В тонких кишках все углеводы расщепляются до моносахаридов.

Угле воды всасываются преимущественно в виде глюкозы и только отчасти в виде других моносахаридов (галактозы, фруктозы). Их всасывание начинается уже в верхних отделах кишечника. В нижних отделах тонких кишок в пищевой кашице углеводов почти не содержится. Углеводы через ворсинки слизистой оболочки, к которым подходят капилляры, всасываются в кровь, и с кровью, оттекающей от тонкого кишечника, попадают в воротную вену. Кровь воротной вены проходит через печень. Если концентрация сахара в крови человека равна 0,1%, то углеводы проходят печень и поступают в общий кровоток.

Количество сахара в крови все время поддерживается на определенном уровне. В плазме содержание сахара составляет в среднем 0,1%. В сохранении постоянного уровня сахара в крови большую роль играет печень. При обильном поступлении сахара в организм его излишек откладывается в печени и вновь поступает в кровь, когда содержание сахара в крови падает. В печени углеводы содержатся в виде гликогена.

При употреблении в пищу крахмала уровень сахара в крови заметным изменениям не подвергается, так как расщепление крахмала в пищеварительном тракте длятся продолжительное время и образовавшиеся при этом моносахариды всасываются медленно. При поступлении значительного количества (150-200г) обычного сахара или глюкозы уровень сахара в крови резко повышается.

Такое повышение сахара в крови называется пищевой или алиментарной гипергликемией. Избыток сахара выводится почками, и в моче появляется глюкоза.

Выведение сахара почками начинается в том случае, когда уровень сахара в крови составляет 0,15-0,18%. Такая алиментарная гипергликемия наступает обычно после употребления большого количества сахара и вскоре проходит, не вызывая каких-либо нарушений в деятельности организма.

Однако при нарушении внутрисекреторной деятельности поджелудочной железы наступает заболевание, известное под названием сахарной болезни или сахарного диабета. При этом заболевании уровень сахара в крови повышается, печень теряет способность заметно удерживать сахар, и начинается усиленное выделение сахара с мочой.

Гликоген откладывается не только в печени. Значительное его количество содержатся также в мышцах, где он потребляется в цепи химических реакций, протекающих в мышцах при сокращении.

При физической работе потребление углеводов усиливается, и их количество в крови увеличивается. Повышенная потребность в глюкозе удовлетворяется как расщеплением гликогена печени на глюкозу и поступлением последней в кровь, так и гликогеном, содержащимся в мышцах.

Значение глюкозы для организма не исчерпывается ее ролью как источника энергии. Этот моносахарид входит в состав протоплазмы клеток и, следовательно, необходим при образовании новых клеток, особенно в период роста. Большое значение имеет глюкоза в деятельности центральной нервной системы. Достаточно, чтобы концентрация сахара в крови понизилась до 0,04%, как начинаются судороги, теряется сознание и т.д.; иначе говоря, при понижении сахара в крови в первую очередь нарушается деятельность центральной нервной системы. Достаточно такому больному ввести в кровь глюкозу или дать поесть обычного сахара, как все нарушения исчезают. Более резкое и длительное понижение уровня сахара в крови — глипогликемия, может повлечь за собой резкие нарушения деятельности организма и привести к смерти.

При небольшом поступлении углеводов с пищей они образуются из белков и жиров. Таким образом, полностью лишить организм углеводов не удается, так как они образуются и из других пищевых веществ.

ЖИРЫ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

В состав жиров входят углерод, водород и кислород. Жир имеет сложное строение; его составными частями является глицерин (С3Н8О3) и жирные кислоты, при соединении которых и образуются молекулы жира. Наиболее распространенными являются три жирных кислоты: олеиновая (С18Н34О2), пальмитиновая (С16Н32О2) и стеариновая (С18Н36О2). От сочетания этих жирных кислот при их соединении с глицерином зависит образование того или другого жира. При соединении глицерина с олеиновой кислотой образуется жидкий жир, например, растительное масло. Пальмитиновая кислота образует более твердый жир, входит в состав сливочного масла и является главной составляющей частью человеческого жира. Стеариновая кислота входит в состав еще более твердых жиров, например, сала. Для того, чтобы человеческий организм мог синтезировать специфический жир, необходимо поступление всех трех жирных кислот.

В процессе пищеварения жир расщепляется на составные части — глицерин и жирные кислоты. Жирные кислоты нейтрализуются щелочами, в результате чего образуются их соли — мыла. Мыла растворяются в воде и легко всасываются.

Жиры являются составной частью протоплазмы и входят в состав всех органов, тканей и клеток организма человека. Кроме того, жиры представляют собой богатый источник энергии.

Расщепление жиров начинается в желудке. В желудочном соке содержится такое вещество как липаза. Липаза расщепляет жиры на жирные кислоты и глицерин. Глицерин растворяется в воде и легко всасывается, а жирные кислоты не растворяются в воде. Желчь способствует их растворению и всасыванию. Однако в желудке расщепляется только жир, раздробленный на мелкие частицы, например жир молока. Под влиянием желчи действие липазы усиливается в 15-20 раз. Желчь способствует тому, чтобы жир распался на мельчайшие частицы.

Из желудка пища попадает в двенадцатиперстную кишку. Здесь на нее изливается сок кишечных желез, а также сок поджелудочной железы и желчь. Под влиянием этих соков жиры подвергаются дальнейшему расщиплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу. Затем, по пищеварительному тракту пищевая кашица попадает в тонкий кишечник. Там, под влиянием кишечного сока происходит окончательное расщепление и всасывание.

Жир под влиянием фермента липазы расщепляется на глицерин и жирные кислоты. Глицерин растворяется и легко всасывается, а жирные кислоты нерастворимы в кишечном содержимом и не могут всосаться.

Жирные кислоты входят в соединение со щелочами и желчными кислотами и образуют мыла, которые легко растворяются и поэтому без затруднений проходят через кишечную стенку. В отличие от продуктов расщепления углеводов и белков продукты расщепления жиров всасываются не в кровь, а в лимфу, причем глицерин и мыла, проходя через клетки слизистой оболочки кишечника, вновь соединяются и образуют жир; поэтому уже в лимфатическом сосуде ворсинки находятся капельки вновь образованного жира, а не глицерин и жирные кислоты.

ОБМЕН ЖИРОВ

Жиры, как и углеводы, являются в первую очередь энергетическим материалом и используются организмом как источник энергии.

При окислении 1г жира количество освобождающейся энергии в два с лишним раза больше, чем при окислении такого же количества углеродов или белков.

В органах пищеварения жиры расщепляются на глицерин и жирные кислоты. Глицерин всасывается легко, а жирные кислоты только после омыления.

При прохождении через клетки слизистой оболочки кишечника из глицерина и жирных кислот вновь синтезируется жир, который поступает в лимфу. Образовавшийся при этом жир отличается от потребленного. Организм синтезирует жир, свойственный данному организму. Так, если человек потребляет разные жиры, содержащие олеиновую, пальмитиновую стеариновую жирные кислоты, то его организм синтезирует специфический для человека жир. Однако если в пище человека будет содержаться только какая-то одна жирная кислота, например олеиновая, если она будет преобладать, то образовавшийся при этом жир будет отличаться от человеческого и приближаться к более жидким жирам. При употреблении же в пищу преимущественно бараньего сала жир будет более твердый. Жир по своему характеру отличается не только у различных животных, но и в разных органах одного и того же животного.

Жир используется организмом не только как богатый источник энергии, он входит в состав клеток. Жир является обязательной составной частью протоплазмы, ядра и оболочки. Остаток поступившего в организм жира после покрытия его потребности откладывается в запас в виде жировых капель.

Жир откладывается преимущественно в подкожной клетчатке, сальнике, вокруг почек, образуя почечную капсулу, а также в других внутренних органах и в некоторых других участках тела. Значительное количество запасного жира содержится в печени и мышцах. Запасной жир является в первую очередь источником энергии, который мобилизуется, когда расход энергии превышает его поступление. В таких случаях жир окисляется до конечных продуктов распада.

Кроме энергетического значения, запасной жир играет и другую роль в организме; например, подкожный жир препятствует усиленной отдаче тепла, околопочечный — предохраняет почку от ушибов и т. д. Жира в организме может откладываться в запас довольно значительное количество. У человека он составляет в среднем 10-20% веса. При ожирении, когда нарушаются обменные процессы в организме, количество отложенного жира доходит до 50% веса человека.

Количество отложившегося жира зависит от ряда условий: от пола, возраста, условий работы, состояния здоровья и т.д. При сидячем характере работы отложение жира происходит более энергично, поэтому вопрос о составе и количестве пищи людей, ведущих сидячий образ жизни, имеет очень важное значение.

Жир синтезируется организмом не только из поступившего жира, но и из белков и углеводов. При полном исключении жира из пищи он все же образуется и в довольно значительном количестве может откладываться в организме. Основным источником образования жира в организме служат преимущественно углеводы.

СПИСОК ЛИТЕРАТУРЫ

1. В.И. Товарницкий: Молекулы и вирусы;

2. А.А. Маркосян: Физиология;

3. Н.П. Дубинин: Гинетика и человек;

4. Н.А. Лемеза: Биология в экзаменационных вопросах и ответах.

Углеводы.

В составе клеток всех живых организмов широкое распространение имеют углеводы.

Углеводами — называют органические соединения, состоящие из углерода (C), водорода (H) и кислорода(O2). В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название — углеводы). Общая формула таких углеводов Cn(h3O)m. Примером может служить один из самых распространенных углеводов — глюкоза, элементный состав которой С6Н12О6

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу (C=O), а также несколько гидроксильных групп(OH).

В организме человека углеводы производятся в незначительном количестве, поэтому основное их количество поступает в организм с продуктами питания.

Виды углеводов.

Углеводы бывают:
1) Моносахариды. (самые простые формы углеводов)

— глюкоза С6Н12О6 (основное топливо в нашем организме)
— фруктоза С6Н12О6 (самый сладкий углевод)
рибоза С5Н10О5 (входит в состав нуклеиновых кислот)
эритроза С4 H8 O4 (промежуточная форма при расщеплении углеводов)

2) Олигосахариды (содержат от 2 до 10 остатков моносахаридов)

Сахароза С12Н22О11 (глюкоза + фруктоза, или в просто – тростниковый сахар)
— лактоза C12 h32 O11 (молочный сахар)
— мальтоза C12 h34 O12 (солодовый сахар, состоит из двух связанных остатков глюкозы)

3) Сложные углеводы (состоящие из множества остатков глюкозы)

крахмал (С6h20O5)n (наиболее важный углеводный компонент пищевого рациона, человек потребляет из углеводов около 80% крахмала.)
гликоген (энергетические резервы организма, излишки глюкозы, при поступлении в кровь, откладываются про запас организмом в виде гликогена)

4) Волокнистые, или неусваеваемые, углеводы, определяющиеся как пищевая клетчатка.

Целлюлоза (самое распостраненное органическое вещество на земле и вид клетчатки)

По простой классификации углеводы можно разделить на простые и сложные. В простые входят моносахариды и олигосахариды, в сложные полисахариды и клетчатка. В подробностях все виды углеводов рассмотрим позже, а так же их применение в пищевом рационе.

Основные функции.

Энергетическая.
Углеводы являются основным энергетическим материалом. При распаде углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма, а при мышечной деятельности на выносливость — до 70 %. При окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал). В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена. Является основным энергетическим субстратом мозга.

Пластическая.
Углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.

Запас питательных веществ.
Углеводы накапливаются (запасаются) в скелетных мышцах, печени и других тканях в виде гликогена. Систематическая мышечная деятельность приводит к увеличению запасов гликогена, что повышает энергетические возможности организма.

Специфическая.
Отдельные углеводы участвуют в обеспечении специфичности групп крови, исполняют роль антикоагулянтов (вызывающие свертывание), являясь рецепторами цепочки гормонов или фармакологических веществ, оказывая противоопухолевое действие.

Защитная.
Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
Регуляторная.
Клетчатка пищи не поддается процессу расщепления в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

В основе строения биологических молекул лежит способность атомов углерода образовывать ковалентные связи, обычно с атомами углерода, кислорода, водорода или азота. Молекулы могут иметь форму длинных цепей или формировать кольцевые структуры.

Среди органических молекул, входящих в состав клетки выделяют углеводы, липиды, белки, нуклеиновые кислоты.

Углеводы – это полимеры, которые образуются из моносахаридов путем гликозидного связывания. Моносахариды объединяются путем конденсации (реакция сопровождается выделением молекулы воды).

Углеводы делятся на простые (моносахариды) и сложные (полисахариды). Среди моносахаридов по числу углеродных атомов различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С), гептозы (7С). В растворах пентозы и гексозы могут принимать циклическую форму.

Две молекулы моносахарида соединяются между собой с выделением молекулы воды и образуется дисахарид. Типичные примеры дисахаридов – сахароза (глюкоза + фруктоза), мальтоза (глюкоза + глюкоза), лактоза (галактоза + глюкоза). Дисахариды по своим свойствам похожи на моносахариды. Они хорошо растворяются в воде и сладкие на вкус.

Если количество моносахаридов увеличивать, то растворимость снижается, исчезает сладкий вкус.

Моносахариды, которые часто встречаются в природе – это глицериновый альдегид, рибоза, рибулоза, дезоксирибоза, фруктоза, галактоза.

Глицериновый альдегид участвует в реакциях фотосинтеза. Рибоза входит в состав РНК, АТФ. Дезоксирибоза входит в состав ДНК. Рибулоза в чистом виде в природе не встречается, а ее фосфорный эфир участвует в реакциях фотосинтеза. Фруктоза участвует в превращениях крахмала. Галактоза входит в состав лактозы.

Полисахариды, которые часто встречаются в природе – крахмал, гликоген, целлюлоза, хитин, инулин.

Крахмал состоит из двух полимеров α – глюкозы. Гликоген – это полимер α – глюкозы. Он является запасным питательным веществом в животных клетках. Целлюлоза – это полимер β – глюкозы. Входит в состав клеточной стенки растений. Целлюлоза состоит из параллельных цепей, которые соединяются водородными связями. Такое поперечное связывание предотвращает проникновение воды. Целлюлоза очень устойчива к гидролизу и является структурной молекулой.

Конец работы —

Эта тема принадлежит разделу:

Современные методы исследования клетки

Электронная микроскопия.. физики предложили использовать вместо пучка света пучок электронов электроны.. трансмиссионный электронный микроскоп..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Световая микроскопия
Клетка и ее органеллы были открыты с помощью светового микроскопа. Изображение некоторых органелл было сложно рассмотреть, так как они были прозрачны. В последствии были разработаны различные метод

Клеточная теория
Клетки –структурные и функциональные единицы живых организмов. Подобное представление, известное как клеточная теория, сложилась постепенно в девятнадцатом веке в результате микрос

Вода и неорганические соединения, их роль в клетке
На первом месте среди веществ клеток находится вода. Ее содержание зависит от вида организма, условий его местообитаний и т.д. Например, содержание воды в эмали зуба – 10%, в нервных клетк

Липиды, их роль в клетке
Липиды – это эфиры какого-либо спирта и жирных кислот. Они разнообразны по своему строению. Выделяют несколько групп липидов. Триацилглицеролы (или настоящие

Белки, их строение и функции
Белки входят в состав всех растительных и животных тканей. В клетках и тканях встречаются более 170 различных аминокислот. В составе белков обнаруживается лишь 26 из них. Обычными компонентами белк

Функции белков
Энергетическая – при полном расщеплении 1 г белка выделяется 17,6 кДж энергии. Структурная – белки входят в состав всех клеточных мембран и органоидов клетки, а также в

Ферменты
Ферменты –это специфические белки, которые присутствуют во всех живых организмах. Они играют роль биологических катализаторов. Ферменты могут являться простыми белками или сложными

Важнейшие группы ферментов
Номер и название классов Катализируемые реакции Примеры 1. Оксидоредуктазы 2. Трансферазы 3. Гидролазы 4. Лиазы 5. Изомер

Нуклеиновые кислоты
Нуклеиновые кислоты были открыты в 1869 году швейцарским химиком Мишером. Существуют два вида нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота). РНК (рибонуклеиновая

Репликация ДНК
Генетический материал должен быть способен к точному самовоспроизведению при каждом клеточном делении. Каждая цепь ДНК может служить матрицей для синтеза полипептидной цепочки. Такой механизм репли

Биологические мембраны, их строение, свойства и функции. Плазматическая мембрана
Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую в

Клеточная стенка растений
Клеточная стенка является одним из важнейших компонентов клеток растений, грибов, имеется у растений. Клеточная стенка выполняет функции: Обеспечивает механическую прочность

Цитоплазма: гиалоплазма, цитоскелет
Живое содержимое эукариотических клеток слагается из ядра и цитоплазмы, которые вместе образуют протоплазму. В состав цитоплазмы входят основное водянистое вещество и находящиеся в нем органеллы.

Органоиды клетки, их строение и функции
Пластиды –автономные органеллы растительных клеток. Существуют следующие разновидности пластид: Пропластиды Лейкопласты Этиопласты Хлоропл

Для поддержания нормальной жизнедеятельности человеку необходимо употреблять белки, жиры и углеводы. И ни один элемент нельзя взять и перестать принимать. Недостаток каждого из них может привести к тяжелым последствиям или даже к смерти.

Вконтакте

Что такое углеводы

Так называют органические вещества, состоящие из молекул сахара. Эти соединения получили свое название из-за своего состава – углерод и вода, которые соединяются между собой. По-другому их называют сахаридами. В зависимости от количества молекул сахара их делят на моносахариды, дисахариды, олигосахариды и полисахариды.

Таким образом, полисахариды помогают поддерживать нормальную жизнедеятельность.

Регуляторная

Под ней подразумевают способность сахаридов регулировать количество некоторых веществ в организме. Так, например, глюкоза, которая содержится в крови, регулирует гомеостаз и осмотическое давление. А клетчатка, которая плохо усваивается человеческим организмом, имеет грубую структуру, благодаря чему раздражает рецепторы и быстрее продвигается в нем.

Метаболическая

Проявляется в способности моносахаридов синтезироваться в важные элементы для поддержания жизнедеятельности – полисахариды, нуклеотиды, аминокислоты и другие. Все это жизненно важно, поэтому углеводосодержащие продукты должны быть в рационе всегда .

Продукты с большим количеством сахаридов

Стоит помнить, что у растений сахариды синтезируются при фотосинтезе, но у животных они никак не появляются сами по себе. Получить нужную их дозу можно только с помощью еды.

Самое большое количество сахаридов содержится в рафинаде и меде. Сахар и рафинад целиком углеводны , а мед содержит глюкозу и фруктозу – до 80% от общей массы.

Важно! В продуктах животного происхождения углеводов очень мало. Например, лактоза – молочный сахар, содержится в молоке млекопитающих животных.

Важно помнить, что сахариды, особенно быстрые, являются источниками ожирения человеческого организма. Поэтому употреблять их нужно в очень ограниченном количестве, так, например, сладкое и хлебобулочные изделия, лучше убрать из рациона или свести к минимуму

[PDF] Углеводы и липиды — Free Download PDF

Download Углеводы и липиды…

Углеводы и липиды Часть А. Выберите один правильный ответ. 1. Наиболее опасен для подростка недостаток в пище А) животных белков Б) растительных белков В) растительных углеводов Г) животных жиров 2. Избыточное количество углеводов в организме приводит к А) отравлению организма Б) их превращению в белки В) их превращению в жиры Г) расщеплению на более простые вещества 3. В организме человека НЕ происходит превращение А) белков в жиры Б) углеводов в белки В) углеводов в жиры Г) органических веществ в неорганические 4. Строительным материалом и источником энергии для организма служат А) минеральные вещества Б) углеводы и жиры В) витамины Г) ферменты 5. В организме человека НЕ может происходить превращение А) жиров в белки Б) белков в углеводы В) углеводов в жиры Г) жиров в углеводы 6. Основным источником энергии в организме являются А) витамины Б) ферменты В) гормоны Г) углеводы 7. В клетках человека и животных в качестве строительного материала и источника энергии используются А) гормоны и витамины Б) вода и углекислый газ В) неорганические вещества Г) белки, жиры и углеводы 8. В клетке липиды выполняют функцию А) каталитическую Б) транспортную В) информационную Г) энергетическую

9. Жиры, как и глюкоза, выполняют в клетке функцию А) строительную Б) информационную В) каталитическую Г) энергетическую 10. Вещества, содержащие азот, образуются при биологическом окислении А) белков Б) жиров В) углеводов Г) глицерина 11. Клетчатка, содержащаяся в сырых овощах и фруктах, употребляемых в пищу человеком, улучшает А) пищеварение в желудке Б) расщепление углеводов В) моторную функцию кишечника Г) всасывание питательных веществ в кровь 12. Функция простых углеводов в клетке А) каталитическая Б) энергетическая В) хранение наследственной информации Г) участие в биосинтезе белка 13. Больше всего энергии выделяется при расщеплении 1 г А) глюкозы Б) белка В) нуклеиновой кислоты Г) жира 14. Конечными продуктами обмена углеводов у человека являются А) мочевина и этиловый спирт Б) уксусная и молочная кислоты В) пировиноградная и лимонная кислоты Г) углекислый газ и вода 15. Расщепление белков в организме человека завершается А) выведением углекислого газа, воды и мочевины Б) накоплением в клетках кислорода В) превращением тепловой энергии в энергию химических связей Г) образованием и накоплением антител в крови 16. В организме человека конечными продуктами окисления органических веществ, не содержащих азота, являются А) липиды Б) вода и углекислый газ В) аминокислоты Г) глицерин и жирные кислоты 17. Липиды растворяются в эфире, но не растворяются в воде, так как А) состоят из мономеров Б) гидрофобны В) гидрофильны Г) являются полимерами

Часть В. В1. Установите соответствие между свойством и функцией органических веществ, и их видом. СВОЙСТВА И ФУНКЦИИ

ВИДЫ ВЕЩЕСТВ

А) растворимы в воде Б) гидрофобны В) входят в состав мембран Г) включают остатки молекул глицерина и жирных кислот Д) образуются в результате расщепления крахмала Е) накапливаются в клетке животных

1) липиды 2) моносахариды

В 2. Каковы свойства, строение и функции в клетке полисахаридов? 1) выполняют структурную и запасающую функции 2) выполняют каталитическую и транспортную функции 3) состоят из остатков молекул моносахаридов 4) состоят из остатков молекул аминокислот 5) растворяются в воде 6) не растворяются в воде

В3. Установите соответствие между особенностями молекул углеводов и их видами. ОСОБЕННОСТИ МОЛЕКУЛ

ВИДЫ УГЛЕВОДОВ

А) мономер Б) полимер В) растворимы в воде Г) не растворимы в воде Д) входят в состав клеточных стенок растений Е) входят в состав клеточного сока растений

1) целлюлоза 2) Глюкоза

В4. Какие углеводы относятся к моносахаридам? А) рибозу Б) глюкозу В) целлюлозу Г) фруктозу Д) крахмал Е) гликоген

В5. Жиры в организме животных и человека А) расщепляются в кишечнике Б) участвуют в построении мембран клетки В) откладываются в запас в подкожной клетчатке, в области почек, сердца Г) превращаются в белки Д) расщепляются в кишечнике до глицерина и жирных кислот Е) синтезируются из аминокислот

Углеводы / КонсультантПлюс

Углеводы.

Углеводы составляют основную часть рациона человека 400 — 500 г в сутки. Около половины суточной энергетической ценности пищевого рациона также обеспечивается углеводами. Кроме того, они выполняют защитную функцию — поддерживают иммунитет; пластическую функцию — входят в состав большинства структур клетки; используются для синтеза нуклеиновых кислот, играющих важную роль в передаче генетической информации и регуляции обмена веществ. Углеводы подразделяются на простые, сложные и клетчатку.

Простые (сахара): моносахариды (фруктоза, глюкоза) и дисахариды (сахароза, лактоза, мальтоза). Сложные (полисахариды) — крахмал, клетчатка (пищевые волокна), пектины. Глюкоза является одним из наиболее распространенных важнейших источников энергии для нервных тканей, сердца, мышц и других органов. Большинство углеводов пищи превращается в нашем организме в глюкозу и таким образом усваивается. Фруктоза характеризуется наибольшей сладостью, часть ее в нашем организме превращается в глюкозу, а часть непосредственно участвует в процессах обмена.

Глюкоза и фруктоза содержатся в фруктах, ягодах и меде. Одним из самых распространенных углеводов в нашем питании является сахароза. В рафинированном сахаре ее содержание достигает 99,75%. Она состоит из глюкозы и фруктозы.

Из сложных углеводов в питании очень важен крахмал, который содержится в крупах, картофеле, хлебе, макаронах. В виде крахмала в наш организм поступает основное количество усвояемых углеводов. В конечном итоге почти все углеводы нашей пищи превращаются в глюкозу и в таком виде поступают из кишечника в кровь, но скорость превращения и появления в крови глюкозы из разных продуктов — разная. Механизм этих процессов отражен в понятии «гликемический индекс», являющийся одной из характеристик пищевой ценности углеводов, характеризующий способность углеводов пищи повышать уровень глюкозы в крови Глюкоза имеет гликемический индекс 100. Чем выше гликемический индекс пищи, тем больше и быстрее повышается концентрация глюкозы в крови после приема этой пищи. Определение гликемического индекса особенно необходимо больным сахарным диабетом. Если вы хотите уменьшить жировую прослойку, сбросить вес, то рекомендуется использовать в своем питании чаще те продукты, чей гликемический индекс низкий, а для быстрого восстановления, наоборот, продукты имеющие высокий гликемический индекс.

Пищевые волокна практически не усваиваются, так как пищеварительные соки не содержат ферментов, необходимых для их расщепления, но выполняют защитную функцию, стимулируя деятельность кишечника. Они связывают холестерин, соли тяжелых металлов, многие вредные вещества и затем выводят их из нашего организма, стимулируя деятельность полезных микроорганизмов обитающих в нашем кишечнике. Для положительных эффектов достаточно поступление пищевых волокон в наш организм в количестве 30 — 40 г. Эту потребность можно удовлетворить за счет введения в рацион хлеба из муки грубого помола, овощей, фруктов, в том числе и сухофруктов. Но не стоит слишком увлекаться пищевыми волокнами, так как употребление продуктов богатых клетчаткой вызывает, чувство сытости при небольшой калорийности, но при этом требуется дополнительное потребление воды.

Нормы физиологических потребностей в углеводах для мужчин, работающих в тяжелых и вредных условиях труда, составляют 499 — 586 г в сутки, для женщин — 417 — 462 г. Если белки оптимально употреблять равномерно в течение всего дня, то углеводы рекомендуется использовать в основном в первой его половине.

Зерновые продукты являются главными поставщиками углеводов в наш организм. С этими продуктами мы получаем также растительные белки, различные витамины, минеральные вещества. Но необходимо учитывать, что все эти полезные компоненты сосредоточены в большей степени в зародыше и оболочке зерна. Чем значительнее и выше степень их обработки, тем меньше наш организм получает эти полезные компоненты. В связи с этим наиболее ценными являются продукты полученные из цельного зерна или включающие отруби. Крупы и изделия из них должны быть основными поставщиками углеводов. Рекомендуется разнообразить потребление круп, так как каждая имеет свои преимущества и недостатки. Изделия из манной крупы легко перевариваются, но бедны витаминами и минералами. Рис хорошо переваривается, содержит много крахмала и белка, но мало клетчатки, витаминов и минеральных веществ. В гречке больше всего железа, витаминов группы B, в пшене и перловой крупе больше клетчатки. Ну а овсяная крупа самая полезная и калорийная. Она выделяется высоким содержанием жиров и занимает второе место после гречки по концентрации белка, но и богата калием, фосфором, магнием, цинком и витаминами группы B.

Хлеб является неотъемлемой частью нашего рациона, но отметим некоторые его особенности. Белый хлеб из высокоочищенной муки содержит легко усвояющийся крахмал, легко переваривается и оказывает менее выраженное сокогонное действие, чем ржаной хлеб. Черный хлеб труднее переваривается, но во много раз полезнее и богаче необходимыми нашему организму веществами. Наиболее важно употреблять хлеб, батоны и диетические булочки с отрубями из цельного зерна. Также оправдывает себя подсушивание хлеба в тостере, так как при этом становятся безвредными дрожжи, содержащиеся в дрожжевом хлебе.

Открыть полный текст документа

Углеводы — виды, функции и свойства: список продуктов богатых углеводами

В последнее время такие темы, как низкоуглеводные диеты, подсчет КБЖУ и рациональное питание, имеют особую популярность. По мнению многих людей, нужно сводить к минимуму употребление продуктов, которые богаты углеводами. Однако такое утверждение нельзя назвать полностью правильным, потому что данные органические вещества представлены несколькими видами, которые, в свою очередь, имеют разные свойства. Углеводы являются неотъемлемой частью любого рациона и ежедневно присутствуют в питании людей, в том числе и тех, кто занимается спортом и придерживается здорового образа жизни. Чтобы разобраться, полезны ли быстрые углеводы, продукты с какими органическими веществами можно употреблять во время похудения или в рамках рационального питания, стоит узнать о видах и свойствах данных органических веществ.

Виды углеводов


Простые. К данной категории относятся соединения:

  • лактоза (содержится только в молочных продуктах),
  • глюкоза,
  • сахароза,
  • фруктоза.

Органические вещества быстро попадают в кровь человека, что вызывает резкое повышение глюкозы в организме. Наши защитные механизмы стараются исправить ситуацию, поэтому соединения часто трансформируются в жировые запасы, а чувство голода в скором времени появляется вновь. Если говорить о продуктах, которые содержат простые (быстрые) углеводы, то в основном это мед, различные фрукты и ягоды, а также сахар вне зависимости от вида. Например, рафинированный сахар практически полностью состоит из сахарозы, которая является самым сладким углеводом.

Сложные. В отличие от предыдущей категории данные органические вещества, наоборот, медленно перерабатываются и усваиваются организмом, за счет чего питают мышцы энергией на протяжении длительного времени. К сложным углеводам относят:

  • пищевую клетчатку,
  • крахмал,
  • гликоген.

Из продуктов это прежде всего цельнозерновые крупы, макаронные изделия из твердых сортов пшеницы, различные бобовые (в том числе и фасоль) и зеленые овощи.

Синтез глюкозы из полисахаридов

Организм может получать из сложных углеводов простые. В этом процессе одна из важных энергетических единиц – глюкоза. Она синтезируется организмом самостоятельно из полисахаридов. К резервным относятся:

  • гликоген – вещество, которое накапливается в клетках и мышцах печени. Мы получаем гликоген из сладостей, мучных изделий и фруктов;
  • крахмал – он является базовым источником, используемым для синтеза глюкозы. Для многих не секрет, что данный полисахарид в большом количестве содержится в картофеле и крупах.

К структурным полисахаридам относятся:

  • пектин – это еще один источник глюкозы, а также очиститель организма. В мармеладе и подобных кондитерских изделиях пектин содержится в высокой концентрации. В пищевой промышленности такое вещество используют в качестве загустителя и маркируют как Е440;
  • целлюлоза – специфический вид углеводов, который не переваривается, но может обеспечивать очищение организма и нормальное пищеварение. Целлюлоза (клетчатка или пищевые волокна) содержится в овощах, фруктах, отрубях и зерновых продуктах.

Быстрые углеводы: употреблять или нет


Узнав более подробно о таких органических веществах, можно уже тщательнее спланировать свой сбалансированный рацион. Целиком и полностью отказываться от простых углеводов не стоит. В противном случае человек может чувствовать себя уставшим, появится слабость, раздражительность и плохое настроение, а это совсем ни к чему. Если вы хотите похудеть, то тогда следует ограничить употребление сладкого, мучного и сахара. Один из вариантов для контроля – регулярный подсчет калорий либо заранее составленный дневной или еженедельный план питания на основе подходящего для вас КБЖУ. Если вы занимаетесь спортом, то после интенсивной тренировки можно съесть небольшой батончик или печенье во время углеводного окна, то есть практически сразу после физической нагрузки.

БЖУ и их особенности преобразования в энергию

Выбирая какой-либо продукт в упаковке, мы можем посмотреть на этикетке состав, массу и распределение белков, жиров и углеводов (то есть питательную ценность). Каждый из этих элементов обладает своими свойствами и особенностями трансформации в энергию при попадании в организм. Для хорошего самочувствия человеку важно употреблять достаточное количество БЖУ, витаминов и микроэлементов. Жиры – это наиболее энергоемкий нутриент, углеводы занимают среднюю позицию, а белки в принципе не всегда оказываются источником энергии. Углеводы расщепляются гораздо быстрее, чем жиры, и во время такого процесса затрачивается меньше кислорода. Из белков энергия преобразуется только в том случае, когда других нутриентов недостаточно. Для похудения действительно существуют диеты, предусматривающие употребление только белков и ненасыщенных жиров. Но данные диеты могут использоваться строго при отсутствии медицинских противопоказаний и в течение непродолжительного периода. Помимо этого, если полностью отказаться от углеводов на какое-то время, будет необходимо восполнить такой «пробел» указанными выше белками и ненасыщенными жирами.

Зачем учитывать гликемический индекс продуктов

Для взрослого человека считается нормальным уровень глюкозы в крови в пределах 4,1–5,9 ммоль/л (в зависимости от лаборатории верхняя и нижняя границы могут немного отличаться от указанных). Такой показатель, как гликемический индекс продуктов, влияет на уровень глюкозы в крови. Именно углеводы понижают или повышают «сахар» в организме. Учитывать ГИ продуктов необходимо, если вы хотите сбросить лишний вес либо имеете проблемы со здоровьем, такие как инсулинорезистентность и сахарный диабет. Чем выше гликемический индекс, тем быстрее углеводы усвоятся. И, соответственно, увеличится уровень глюкозы в крови. По этой причине предпочтение стоит отдавать медленным углеводам, а быстрые ограничить либо убрать из рациона. Из таблицы, приведенной ниже, видно, что какой-либо зависимости между энергетической ценностью продуктов и ГИ нет. Таким образом, пища может быть вовсе не сладкой, но иметь высокий гликемический индекс.

Продукт (100 г)

Гликемический индекс

Калорийность, ккал

Медленные углеводы

Коричневый рис

45

111

Нут

30

364

Быстрые углеводы

Манная каша

80

369

Белый рис

70

130

Какие продукты от Herbalife Nutrition можно использовать для поддержания пищеварительной системы и похудения

В основном люди ограничивают себя в употреблении углеводов для того, чтобы снизить вес и улучшить обмен веществ. Вместе с рациональным питанием и спортивной нагрузкой продукты от Herbalife Nutrition могут помочь достичь желаемого результата быстрее.

«Овсяно-яблочный напиток». Он обладает нежным вкусом и может сделать завтрак сбалансированным. В составе есть растворимые и нерастворимые пищевые волокна, которые помогают поддерживать функцию естественного очищения организма, формировать и сохранять микрофлору кишечника. Для приготовления напитка нужно смешать 1 порцию порошка с 200 мл жидкости – это легко и быстро.

«Комплекс пищевых волокон». Две мерные ложечки, разведенные в воде либо в другой жидкости, могут в течение дня обеспечить необходимым количеством клетчатки для стабильной работы кишечника. При добавлении в блюда комплекс не меняет вкуса пищи, поэтому может использоваться с разными продуктами.

«Желтые таблетки». Наверняка всем знакома ситуация, когда хочется съесть вкусное пирожное или кусочек тающего во рту торта. Удержаться практически невозможно, если дома кто-то из родственников регулярно употребляет сладкие продукты (а значит, они есть в наличии) или кто-то из коллег рядом аппетитно ест конфеты с чаем. Также бывает сложно ограничивать себя на начальном этапе перехода на рациональное питание и при отказе от быстрых углеводов. «Желтые таблетки» разработаны для контроля чувства голода и снижения тяги к сладкому. Эффект может достигаться за счет компонентов, а именно хрома и экстракта гарцинии камбоджийской.

 «Термо Комплит». Данный продукт может обеспечить организм энергией и способствовать снижению веса за счет стимуляции метаболизма. БАД следует принимать во время еды всего лишь по 1 таблетке в день. В составе есть несколько компонентов. Например, кофеин, который помогает активизировать процесс обмена веществ и поднять тонус. Корица, которая может способствовать снижению уровня глюкозы в крови и усвоению сахара. А также экстракты зеленого чая и мате помогают снизить вес. Помимо этих компонентов, в составе еще есть витамин С и активный ингредиент – теобромин.

«Клеточный Активатор». БАД предназначен для эффективного усвоения питательных веществ. L-карнитин, входящий в состав, может способствовать тому, чтобы жирные кислоты переходили в энергию, и увеличивать выработку энергии в клетках. Для поддержания пищеварения БАД содержит алоэ. Витамины группы В, такие как тиамин (В1), рибофлавин (В2) и пиридоксин (В6), могут улучшать обмен веществ, что, в свою очередь, помогает сбросить лишний вес. Применять «Клеточный Активатор» легко: во время еды 3 раза в день по 1 капсуле.

Вы задавались вопросом: углеводы – враги или друзья для человека? Если да, то, ознакомившись с фактами об этих органических веществах, можно сделать вывод: при разумном подходе к питанию и образу жизни углеводы не доставляют проблем, а, наоборот, служат хорошим источником энергии.


Полисахарид — описание ингредиента, инструкция по применению, показания и противопоказания

Описание полисахарида

Полисахариды – это сложные биоорганические вещества, принадлежащие к классу углеводов. Другое их название – гликаны.

Полисахарид представляет собой полимерную молекулу, состоящую из моносахаридных остатков, объединенных гликозидной связью. То есть это сложная молекула, цепочка которой построена из объединенных друг с другом остатков более простых углеводов. Структуру вещества может составлять разное количество мономеров: от десятков до сотен. Она бывает разветвленной и линейной.

Полисахариды плохо растворяются в воде либо совсем не растворяются. Они бывают бесцветными и соломенными, не имеют вкуса и запаха.

Функции полисахаридов

К полисахаридам относятся разнообразные вещества, выполняющие в организме человека различные функции:

  • Энергетическая функция – гликоген, крахмал. Отвечают за накопление углеводов и снабжение организма глюкозой.
  • Запасающая функция – крахмал, гликоген. Создают запас энергии в жировых тканях.
  • Кофакторная – гепарин. Понижает свертываемость крови и выступает в качестве кофактора ферментативных соединений.
  • Опорная – хондроитинсульфат, целлюлоза. Целлюлоза содержится в растительных стеблевых тканях, а хондроитинсульфат – в животных костных.
  • Защитная – кислые гетерополисахариды. Входят в состав стенок клеток живых организмов. Входят в состав секрета, выделяемого железами, покрывающего стенки желудка, пищевода и других органов и защищающего их от механических повреждений и атак болезнетворных микроорганизмов.
  • Гидроосмотическая – кислые гетерополисахариды. Отвечают за удерживание воды и ионов с положительным зарядом в клетках, не дают накопиться жидкости в пространстве между клетками.
  • Структурная – кислые гетерополисахариды. Сконцентрированы в межклеточном веществе, проявляют цементирующие свойства.
Внимание! Полисахариды тяжело усваиваются в организме человека ввиду сложной структуры. Однако они крайне важны и должны присутствовать в рационе каждого человека.

Сложные углеводы улучшают пищеварение. Растворимые полимеры связываются с желчными кислотами и растворяют их, улучшая усвоение, что способствует понижению уровня холестерина в крови. Кроме того, они тормозят всасывание простых сахаров, нормализуют концентрацию липидов в крови и очищают кишечник.

Фармакологические свойства

Эко-сертифицированные полисахариды активно применяются в медицине. Они проявляют противоопухолевую, антитоксическую, противовирусную, антисклеротическую активность.

Большой интерес для медицины представляет антисклеротическое действие гликанов. Они образуют с кровяными белками комплексы, препятствующие прилипанию холестерина к сосудистым стенкам, что снижает риск атеросклероза.

Антитоксическая функция связана со способностью полимеров выводить из организма тяжелые металлы, радионуклиды, токсины, продукты метаболизма.

Механизм повреждения энергетического обмена при гипоксии и возможные пути его коррекции фумаратсодержащими растворами

Л.В. Слепнева, Г.А. Хмылова

ФГБУ «Российский НИИ гематологи трансфузиологии ФМБА», г. Санкт-Петербург

 

Трансфузиология №2, 2013

Резюме

Статья посвящена вопросам механизма действия препаратов, влияющих на процессы энергообразования в организме. Показаны пути коррекции нарушений энергетического обмена и преимущества фумаратсодержащих инфузионных растворов.

Ключевые слова: гипоксия, цикл Кребса, сукцинат, фумарат, фумаратсодержащие инфузионные растворы, мафусол, полиоксифумарин, конфумин.

В настоящее время нарушения энергетического обмена рассматриваются как один из ведущих патологических процессов, приводящих к необратимым последствиям и гибели организма, что обусловливает исключительную важность рассматриваемой проблемы. Коррекция или устранение энергодефицита является обязательным компонентом в лечении большинства патологических состояний, и в связи с этим, понимание механизма действия препаратов, способных влиять на различные звенья энергообмена, для практикующих врачей приобретают особую ценность.

Жизнедеятельность организма с многообразием всех физиологических функций и биохимических процессов возможна лишь при условии его постоянного энергообеспечения. В настоящее время имеется значительный экспериментальный и клинический материал, свидетельствующий о том, что различные экстремальные воздействия на организм (тяжелая кровопотеря, ожог, травма, сердечная недостаточность, острое отравление и др.) вызывают однотипные повреждения в клеточной системе энергообразования. Это явление обусловлено тем, что результирующим эффектом различных по своей природе экстремальных факторов является развитие острого кислородного голодания тканей. Дефицит кислорода — акцептора электронов в митохондриальной дыхательной цепи, приводит к глубокому подавлению биоэнергетической функции митохондрий. Выходит из строя основная энергетическая система клетки, энергопродукция клетками резко снижается, и, как следствие, нарушается течение многочисленных энергозависимых процессов в организме [2, 6, 11, 13, 24, 34, 36, 37, 43].

Недостаточность систем энергообразования в клетке составляет существенный элемент патогенеза многих заболеваний. По мнению ряда авторов, поддержание жизни в экстремальных условиях возможно до тех пор, пока дефицит энергии не достигнет критических величин. Истощение клеточных энергетических резервов ниже допустимого уровня сопровождается развитием в клетке необратимых процессов и гибелью организма.

Прежде чем перейти к рассмотрению вопросов, связанных с нарушением энергетического обмена в клетке при патологических состояниях и его коррекции применением различных лекарственных средств, кратко остановимся на описании процессов энергообразования в нормально функционирующей клетке [16, 41].

На рис. 1 схематически представлен сложный процесс распада питательных веществ, который обеспечивает ступенчатое постепенное освобождение энергии и аккумуляцию ее в виде макроэргической фосфатной связи аденозинтрифосфата (АТФ).

Распад сложных питательных веществ на более простые является необходимым условием для дальнейшего использования их в клетке в качестве источников энергии и пластического материала. В катаболизме основных питательных веществ (углеводов, белков и жиров) можно выделить три основные стадии.

На первой стадии крупные молекулы под влиянием сложных ферментативных систем расщепляются на более простые. В результате действия этих ферментативных систем углеводы расщепляются до гексоз и пентоз, липиды – до глицерина и жирных кислот, из белков образуется около 20-ти аминокислот.

На второй стадии происходит дальнейшее расщепление образовавшихся соединений. Из 20-ти различных аминокислот образуется лишь несколько конечных продуктов, а именно, ацетил-коэнзим А, α-кетоглютаровая и щавелевоуксусная кислоты.

Жирные кислоты в процессе β-окисления превращаются в ацетил-КоА. Гексозы под действием ферментативных систем гликолиза расцепляются до пировиноградной кислоты, которая затем в процессе окислительного декарбоксилирования превращается также в ацетил-КоА.

Гликолиз является тем механизмом, посредством которого многие организмы получают химическую энергию из глюкозы и других субстратов в отсутствие молекулярного кислорода. У большинства аэробных организмов процесс гликолиза является предварительной ступенью для дальнейшего окисления продуктов брожения кислородом в процессе дыхания.

Метаболиты, образовавшиеся на второй стадии распада питательных веществ (ацетил-КоА, α-кето-глютаровая, щавелевоуксусная кислоты) вступают в третью стадию, которая для них является общей и на которой они в конечном итоге окисляются до СО2 и Н2О.

Третья стадия – стадия терминального окисления питательных веществ, во время которой освобождается основная масса энергии, осуществляется в митохондриях через цикл трикарбоновых кислот (ЦТК) и митохондриальную дыхательную цепь. ЦТК – общий конечный путь окислительного катаболизма всех видов клеточного топлива в аэробных условиях. В этом цикле под действием специфических дегидрогеназ протекают процессы дегидрирования субстратов, восстановительные эквиваленты от которых (протоны и электроны) поступают на митохондриальную дыхательную цепь. Дегидрирование – отщепление молекул Н2 от интермедиатов цикла Кребса происходит, в основном, при помощи дегидрогеназ, простетической группой которых является никотинамидаденин-динуклеотид (НАД), и лишь дегидрирование янтарной кислоты осуществляется ФАД-зависимой дегидрогеназой (сукцинатдегидрогеназой).

Дыхательная цепь, состоящая из серии переносчиков электронов, передает восстановительные эквиваленты конечному акцептору электронов – молекулярному кислороду. Дыхательная цепь – это полиферментная система, локализованная во внутренней мембране митохондрий, основными компонентами которой являются НАД-зависимые дегидрогеназы, флавопротеиды и цитохромы (рис. 1).

Сопряженно с транспортом электронов протекает процесс окислительного фосфорилирования, в котором значительная часть свободной энергии электронов, передаваемых редокс-цепью на кислород, аккумулируется и трансформируется в специфическую макроэргическую связь АТФ. Таким образом, необходимая для нужд организма энергия образуется благодаря функционированию взаимосвязанных процессов гликолиза и дыхания. В процессе гликолиза высвобождается лишь незначительная часть той химической энергии, которая потенциально может быть извлечена из молекулы глюкозы. Полное окисление глюкозы до СО2 и Н 2О, осуществляемое в процессе дыхания, приводит к синтезу значительно большего количества макроэргов. При окислении одной молекулы глюкозы в гликолитическом цикле образуется 2 молекулы АТФ, тогда как дальнейшее расщепление продуктов гликолиза в цикле Кребса сопровождается синтезом 38 молекул АТФ. Таким образом, митохондриальная дыхательная цепь является основным местом приложения и утилизации кислорода в клетке.

При дефиците кислорода – конечного акцептора электронов в редокс-цепи митохондрий – отмечается выраженная гиперредукция всех компонентов терминального звена окисления. Прекращаются транспорт электронов по дыхательной цепи и сопряженный с ним процесс образования макроэнергических фосфатов. Известно, что в условиях нормоксии НАД-звено дыхательной цепи митохондрий принимает восстановительные эквиваленты из различных источников:

1. от субстратов цикла Кребса при участии специфических дегидрогеназ;

2. оксиацил-КоА-дегидрогеназы поставляютионы водорода на НАД- звено при окислении жирных кислот;

3. сложная система пируват-дегидрогеназы, отщепляя ионы водорода в реакциях окислительного декарбоксилирования, передает их на НАД-звено редокс-цепи;

4. внемитохондриальный НАД-Н, образованный в центральной реакции гликолитической оксидоредукции, также отдает свои протоны на митохондриальную дыхательную цепь (рис.1).

Мощный поток восстановительных эквивалентов в условиях кислородной недостаточности не может реализоваться из-за гипервосстановленности НАД-зависимого участка дыхательной цепи. Выключается из функционирования основная энергетическая система клетки, резко снижается продукция АТФ.

В анаэробных условиях клетка стремится восполнить энергетический дефицит за счёт активации гликолиза. Несмотря на то, что при анаэробном гликолизе продуцируется почти в 20 раз меньше АТФ, чем при полном сгорании глюкозы в цикле Кребса, потенциальная скорость процесса в основном может обеспечить энергозатраты организма. Однако для осуществления гликолитических реакций необходим постоянный приток окисленной формы НАД, который при нормоксии обеспечивается работой специфических челночных механизмов. Гликолитический НАД-Н проникает через митохондриальные мембраны посредством функционирования α-глицерофосфатного, β-оксибутиратного и других механизмов переноса восстановительных эквивалентов.

Оксибутиратный и глицерофосфатные шунты являются основными конкурентами лактатдегидрогеназного механизма окисления гликолитического НАД-Н, деятельность которого при нормальной концентрации кислорода в клетке подавлена более активными вышеназванными механизмами.

При нарушении электронтранспортной функции редокс-цепи и гиперредукции ее НАД-звена клетка вынуждена изыскивать другие пути реокисления цитоплазматического НАД-Н. В условиях острой гипоксии конечный продукт гликолиза – пируват – не подвергается декарбоксилированию и не вовлекается в цикл Кребса, а, принимая восстановительные эквиваленты от цитоплазматического НАД-Н, превращается в лактат с освобождением новых порций окисленной формы НАД (рис. 2).

Активация лактатдегидрогеназного механизма поставки НАД для гликолиза в конечном итоге приводит к истощению запасов гликогена и тканевому ацидозу вследствие накопления кислых продуктов метаболизма (лактата, пирувата, оксибутирата, глицерофосфата и др.). Избыточные концентрации конечного субстрата анаэробного гликолиза – лактата – тормозят последнюю реакцию гликолитического цикла.

Регенерация НАД прекращается, и, именно, дефицит пиридиннуклеотида останавливает гликолиз и анаэробную продукцию АТФ. Клеточный ацидоз способствует нарушению проницаемости мембран, вплоть до разрушения лизосом. В цитоплазму поступают аутолитические ферменты. Развивается процесс аутолиза клеток, сопровождающийся повреждением тканей и органов. В организме формируются необратимые изменения.

Таким образом, степень повреждения митохондриального метаболизма в условиях тяжелой кислородной недостаточности определяет тяжесть многих патологических состояний. Накопленный опыт лечения шока и кровопотери показывает, что существующие инфузионнотрансфузионные среды, проявляя лечебное действие в стадиях легкой и средней тяжести, оказываются недостаточными на поздних стадиях процесса. Особенности течения поздних стадий геморрагического шока связывают главным образом с генерализованными нарушениями метаболизма и возникающими в результате этого расстройствами энергообмена.

В связи с этим применение совместно с кровезаменителями препаратов, способных повысить энергетический потенциал клетки в условиях гипоксии, рассматривается как один из путей повышения эффективности инфузионной терапии гиповолемических состояний.

В ликвидации энергетического дефицита большое значение придается антигипоксантам. К настоящему времени не выработано единого общепринятого определения антигипоксантов и их классификации, так как в ответ на гипоксическое воздействие вовлекаются самые разные системы организма. Препараты биоэнергетического действия можно разделить на несколько групп.

К первой группе следует отнести препараты, являющиеся источником энергетического сырья (глюкоза, сорбит, АТФ, фосфорилированные гексозы и др.). Использование их показано при патологических состояниях, сопровождающихся истощением энергетических ресурсов в клетке. Включение в состав противошоковых кровезаменителей 5-10% глюкозы или фосфорилированных гексоз [1, 42] для поддержания гликолиза в клетках не позволяет существенно повысить эффективность инфузионной терапии из-за неизбежно возникающего накопления кислых продуктов метаболизма и дефицита окисленной формы пиридиннуклеотида (НАД). Отсюда понятно, что введение таких субстратов окисления, как глюкоза или гексозы, при гипоксии целесообразно лишь с препаратами, ускоряющими утилизацию лактата. Таким свойством обладают соединения группы гутимина. В эксперименте показан антигипоксический эффект гутимина и амтизола при геморрагическом шоке [8].  

Ко второй группе препаратов можно отнести средства, которые, не являясь энергетически богатыми соединениями, способны активно воздействовать на энергетический обмен посредством коррекции отдельных звеньев многоступенчатого процесса аккумуляции энергии в клетке. Данные о нарушении транспорта электронов в дыхательной цепи митохондрий при шоке и кровопотери [28] являются теоретической предпосылкой для применения антигипоксантов с электрон-акцепторными свойствами. В литературе имеются довольно обширные сведения о применении естественных и искусственных антигипоксантов – переносчиков электронов. К числу первых относится цитохром С, который, как известно, является одним из компонентов дыхательной цепи митохондрий и служит мобильным переносчиком электронов. Играя важную роль в энергетическом метаболизме клетки, цитохром С показал высокую лечебную эффективность в клинической практике при терапии шока, кровопотери и постишемической гипоксии [12, 32].

Разработке и исследованию искусственных переносчиков электронов посвящено значительное количество работ. Эти соединения способны модифицировать дыхательную цепь митохондрий так, чтобы осуществлять «сброс» восстановительных эквивалентов непосредственно на кислород, минуя заблокированные участки дыхательной цепи. К числу таких веществ относится ряд соединений из класса хинонов (ортопарабензохиноны, нафтохиноны, гексогидрохиноны). Высокий редокс-потенциал этих препаратов определяет их способность к транспорту электронов [30]. При проведении экспериментов на животных многие из этих соединений оказались токсичными, что не позволило рекомендовать их в качестве лечебных средств. Из всех средств, формирующих искус- ственные редокс-системы, в медицинскую практику внедрен препарат «Гипоксен», представляющий собой синтетический полихинон [9].

Известно, что антигипоксанты группы хинонов осуществляют перенос электронов с НАД-Н звена на кислород, минуя все 3 пункта фосфорилирования в дыхательной цепи и, следовательно, устранение дефицита энергии при введении этих препаратов может происходить лишь за счет активации гликолитической выработки АТФ. Однако для полноценного проявления антигипоксических свойств этих соединений необходим акцептор электронов – кислород. Наибольший интерес для включения в состав новых комплексных кровезаменителей представляют, так называемые, истинные антигипоксанты или антигипоксанты прямого действия, непосредственно влияющие на митохондриальный метаболизм при гипоксии.

Согласно теоретическим предпосылкам, одна из возможностей поддержания биоэнергетики клетки может быть реализована посредством стимуляции адаптационных механизмов к гипоксии, работающих на последних этапах цикла Кребса. Из всех субстратов цикла Кребса только влияние сукцината на энергетический обмен подробно изучено в эксперименте на животных.

Исследование механизма действия сукцината при гипоксических состояниях проведено в работах М.Н. Кондрашовой с соавторами [5, 6]. Исследователи считают, что в условиях гипоксии сукцинат, не являясь НАД-зависимым субстратом, «монополизирует» дыхательную цепь и активно в ней окисляется. Высокая скорость реакции окисления сукцината, поставляющей 2 молекулы АТФ, позволяет компенсировать выработку 3-х молекул АТФ, образующихся при окислении НАД-зависимых субстратов. Однако в условиях прогрессирующей гипоксии дефицит кислорода, лимитирующий скорость окисления всех субстратов, снижает ценность сукцината и ставит его в один ряд с другими субстратами окисления. Поэтому применение сукцината в качестве антигипоксанта должно быть особенно эффективно в комплексе с препаратами, улучшающими кислородообеспечение организма. Преимущественное использование сукцината – естественная защита клетки против гипоксии. При этом пополнение фонда субстрата может происходить за счет реакций цикла Кребса, идущих как в прямом, так и в обратном направлениях (рис. 3).

При обратном течении реакций имеющийся запас малата по мере необходимости превращается в фумарат, который восстанавливается в сукцинат. Восстановление фумарата сопровождается выработкой АТФ, и поэтому реакции обращения в системе «малат-фумарат-сукцинат» способны поддерживать окислительное фосфорилирование даже при аноксии.

В условиях же гипоксии инверсивные превращения фумарата выполняют роль триггера, который, в зависимости от концентрации кислорода регулирует течение конечных реакций цикла Кребса в прямом либо в обратном направлениях, и эти реакции сопровождаются синтезом АТФ. Механизм инверсивных превращений фумарата в цикле Кребса объясняет эффективность применения фумаратсодержащих инфузионных сред, таких как кристаллоидный раствор – мафусол, коллоидный кровезаменитель – полиоксифумарин и концентрированный раствор фумарата натрия – конфумин. Эти препараты разработаны и основательно изучены в Российском НИИ гематологии и трансфузиологии. Лечебная эффективность была изучена на моделях геморрагического и ожогового шока, а также при экспериментальном перитоните [17–20, 23, 25,45]. Оценку эффективности инфузионных растворов определяли по совокупности показателей системной гемодинамики, кислородного режима, кислотно-основного состояния (КОС), перекисного окисления липидов и митохондриального метаболизма в печени и сердце животных. Полярографическое исследование митохондрий, выделенных из печени и сердца животных, леченных фумаратсодержащими растворами, свидетельствовало о полном восстановлении энергопродуцирующих функций этих органелл. Следует отметить, что летальность животных в контрольной группе (тяжелый шок) составляло 100%, при лечении мафусолом или полиоксифумарином – 17–20%.

Результаты исследования митохондриального метаболизма позволяют предположить, что парентеральное введение фумарата индуцирует суперкомпенсацию адаптационного механизма к гипоксии, функционирующих на последних этапах цикла Кребса. Фумарат в системе «малат-фумарат-сукцинат» способен поддерживать синтез АТФ как в аэробных, так и в анаэробных условиях. При дефиците кислорода фумарат, восстанавливаясь ФАД∙Н2-группой сукцинатдегидрогеазой, превращается в сукцинат и освобождает новые порции окисленной формы ФАД. Принимая восстановительные эквиваленты от НАД-Н, ФАД способствует снятию гипервосстановленности НАД звена дыхательной цепи и синтезу АТФ в бескислородной среде. При поступлении кислорода в клетку сукцинат, синтезируемый из фумарата, монополизирует дыхательную цепь и, активно окисляясь в ней, продуцирует АТФ (рис. 3). К тому же, образование в этих реакциях окисленной формы НАД запускает также и механизм гликолитической продукции АТФ. Поддержание энергетического потенциала клетки при инфузия фумарата способствует удлинению периода обратимых изменений в организме и предотвращает развитие «необратимости» при патологических состояниях, отягощенных глубокой гипоксией.

Парентеральное введение фумаратсодержащих растворов наряду с восстановлением биоэнергетики клетки, сопровождается «мягким» ощелачивающим действием препаратов на кислотно-основное состояние крови при ацидозе. Это действие обусловлено тем, что такие органические соли, как фумарат-, ацетат-, лактат-, сукцинат- и малат натрия являются соединениями, образованными сильным основанием (NaOH) и слабой кислотой. При гидролизе подобных солей в кровеносном русле освобождается соответствующая кислота и NaOH, который расходуется на нейтрализацию кислых продуктов метаболизма. Реакция гидролиза смещена вправо, так как постоянно происходит потребление продукта гидролитической реакции – NaOH (рис. 4).

Следует отметить, что вышеназванные соли оказывают мягкое ощелачивающие действие по сравнению с бикарбонатом натрия, широко используемым в клинической практике для ликвидации ацидоза. Реакция гидролиза NaHСО3 протекает значительно быстрее, так как в ходе реакции удаляются оба ее продукта: NaOH расходуется на нейтрализацию метаболитов, а второй продукт реакции – угольная кислота, нестоек и разлагается на Н2О и СО2. Образованная в избыточном количестве щелочь может способствовать развитию алкалоза, что имеет место в клинических условиях при передозировке бикарбоната натрия.

Все вышеперечисленные соли входят в состав различных инфузионных растворов (мафусол, полиоксифумарин, конфумин, лактасол, Рингер-лактат, ацесоль, реамберин, стерофундин и др.). Однако оказывая ощелачивающее действие при ацидозе, далеко не все эти препараты способны поддержать энергетический обмен при гипоксии. Восстановление показателей КОС «химическим путем» является недостаточным для успешной терапии шока.

Следует к тому же учитывать, что при гидролизе лактата натрия выделяется молочная кислота, которая в сумме с эндогенной молочной кислотой, возникающей в больших концентрациях при гипоксии, могут способствовать подавлению реакций гликолиза, что, в свою очередь, вызывает снижение продукции гликолитической АТФ. Существуют также исследования, указывающие, что лактат может вызвать интерстициальный отек головного мозга и повышать агрегацию тромбоцитов и эритроцитов [14, 39, 44]. Лактатсодержащие инфузионные растворы нельзя использовать при печеночной недостаточности [35, 38, 40], а также в случаях шока, сопровождающегося гиперлактатемией или лактатным ацидозом [33].

Ацетат натрия, в отличие от лактата, не проявляет токсического действия при тяжелом шоке. Однако утилизация уксусной кислоты, образованной при гидролизе ацетата натрия, в условиях кислородной недостаточности затруднена вследствие постгипоксического дефекта в функционировании митохондриальной дыхательной цепи. Лечебное действие фумарата натрия в сравнении с лактатом и ацетатом представляется более физиологичным, так как при его введении наряду с ощелачивающим эффектом проявляется и его влияние на восстановление процессов генерации энергии в митохондриях, а, следовательно, устраняется причина возникновения метаболического ацидоза.

Сукцинатсодержащие растворы, в частности «Реамберин», способствуют поддержанию энергетического обмена, однако, в условиях острого дефицита кислорода подавляется окисление сукцината и существенно снижается его энергопродуцирующая функция. Окисление малата в цикле Кребса осуществляется НАД-зависимой малатдегидрогеназой, и эта реакция тормозится из-за гипервосстановленности НАД-звена редокс-цепи митохондрий при гипоксии. Следовательно, в этих условиях субстрат не способен повысить энергетический потенциал клетки. К тому же, в инфузионном малатсодержащем растворе «Стерофундин» концентрация малата очень низкая, чтобы обеспечить достаточную продукцию АТФ. В условиях гипоксии повышение концентрации малата могло бы создать условия для обращения реакций в цикле Кребса с увеличением фонда фумарата, способного принимать восстановительные эквиваленты (Н2) и синтезировать АТФ. Однако концентрация малата в стерофундине (5 ммоль/л) незначительна для запуска реакций в цикле Кребса в обратном направлении.

Фумаратсодержащие растворы (мафусол, полиоксифумарин) содержат высокие концентрации фумарата (86 ммоль/л), обеспечивающие как выработку АТФ, так и накопление сукцината, который активно окисляется при поступлении кислорода. Введение субстратов в организм при гипоксии показано еще и вследствие того, что кислородная недостаточность сопровождается значительным субстратным голодом клетки. Препараты «Мафусол» и «Полиоксифумарин» с высокой концентрацией фумарата и возможностью инфузий больших объемов этих растворов без побочных эффектов являются высокоэффективными средствами терапии шока различного генеза. Это подтверждено клинически. Так, кристаллоидный кровезаменитель «Мафусол» разрешен к медицинскому применению уже более 20 лет и широко используется в разных областях медицины (хирургия, неврология, кардиология, реаниматология, педиатрия, акушерство и гинекология, комбустиология, токсикология и др.) [3, 15, 22, 27, 29, 31]. Отличительной особенностью этого препарата является то, что его можно переливать в больших количествах, не только внутривенно, но и внутриартериально, а также в смеси для заполнения контура АИК при открытых операциях на сердце. Ни один из существующих сейчас на фармацевтическом рынке инфузионных антигипоксических препаратов не обладает этими свойствами. Полифункциональный коллоидный плазмозаменитель «Полиоксифумарин» с 1999 года успешно применяется у взрослых и детей в клинической практике гиповолемических состояний различной степени тяжести [10, 21, 22]. Аналогов ему нет ни в России, ни зарубежом.

Применение концентрированного раствора фумарата натрия (препарата «Конфумин») в качестве антигипоксического компонента в схемах инфузионно-трансфузионной терапии существенно увеличивает уровень субстратов окисления в кровеносном русле и позволяет повысить лечебную эффективность общепринятых в клинической практике плазмозаменителей [3, 4, 22, 25-27]. Конфумин разрешен к широкому медицинскому применению у взрослых, промышленный выпуск препарата освоен в ОАО «Фирма Медполимер».

Физиология, углеводы — PubMed

Углеводы являются одним из трех макроэлементов в рационе человека, наряду с белками и жирами. Эти молекулы содержат атомы углерода, водорода и кислорода. Углеводы играют важную роль в организме человека. Они действуют как источник энергии, помогают контролировать метаболизм глюкозы и инсулина в крови, участвуют в метаболизме холестерина и триглицеридов и помогают при брожении. Пищеварительный тракт при потреблении начинает расщеплять углеводы до глюкозы, которая используется для получения энергии.Любая дополнительная глюкоза в кровотоке накапливается в печени и мышечной ткани до тех пор, пока не потребуется дополнительная энергия. Углеводы — это общий термин, который охватывает сахар, фрукты, овощи, волокна и бобовые. Хотя существует множество видов углеводов, в рационе человека преобладает определенная часть.

Конструкции

Моносахарид : Самая основная, основная единица углевода.Это простые сахара с общей химической структурой C6h22O6.

  1. Примеры: глюкоза, галактоза, фруктоза

Дисахарид: Составные сахара, содержащие два моносахарида с отщеплением молекулы воды с общей химической структурой C12h32O11

  1. Примеры: сахароза, лактоза

Олигосахарид: Полимер содержит от трех до десяти моносахаридов.

  1. Примеры: мальтодекстрины, рафиноза

Полисахариды: Полимеры, содержащие длинные цепи моносахаридов, соединенных гликозидными связями.

  1. Примеры: амилоза, целлюлоза

Типы

Простые углеводы: Один или два сахара (моносахариды или дисахариды), объединенные в простую химическую структуру.Они легко используются для получения энергии, вызывая быстрое повышение уровня сахара в крови и секреции инсулина поджелудочной железой.

  1. Примеры: фруктоза, лактоза, мальтоза, сахароза, глюкоза, галактоза, рибоза

  2. Пищевые продукты: конфеты, газированные напитки, кукурузный сироп, фруктовый сок, мед, столовый сахар

Сложные углеводы: Три или более сахара (олигосахариды или полисахариды), связанные вместе в более сложную химическую структуру.Они перевариваются дольше и поэтому более постепенно влияют на повышение уровня сахара в крови.

  1. Примеры: целлобиоза, рутинулоза, амилоза, целлюлоза, декстрин

  2. Пищевые продукты: яблоки, брокколи, чечевица, шпинат, цельнозерновые нерафинированные, коричневый рис

Крахмалы: Сложные углеводы содержат большое количество молекул глюкозы. Растения производят эти полисахариды.

  1. Примеры включают картофель, нут, макаронные изделия и пшеницу.

Клетчатка: Неперевариваемые сложные углеводы, которые способствуют здоровому росту бактерий в толстой кишке и действуют как наполнитель, облегчая дефекацию. Основные компоненты включают целлюлозу, гемицеллюлозу и пектин.

  1. Нерастворимый: Поглощает воду в кишечнике, тем самым смягчая и увеличивая объем стула. Преимущества включают регулярное опорожнение кишечника и снижение риска дивертикулеза.

    1. Примеры: отруби, семена, овощи, коричневый рис, кожура картофеля.

  2. Растворимый: помогает снизить уровень холестерина и ЛПНП в крови, снижает напряжение при дефекации и снижает уровень глюкозы в крови после приема пищи.

    1. Примерами являются мясистые фрукты, овес, брокколи и сушеные бобы.

Функции углеводов в организме — Питание человека: издание 2020 г.,

Гавайский университет в Маноа Программа пищевых наук и питания человека и Программа питания человека

В организме человека есть пять основных функций углеводов.Они производят энергию, накапливают энергию, строят макромолекулы, экономят белок и способствуют метаболизму липидов.

Производство энергии

Основная роль углеводов — снабжать энергией все клетки тела. Многие клетки предпочитают глюкозу в качестве источника энергии по сравнению с другими соединениями, такими как жирные кислоты. Некоторые клетки, такие как красные кровяные тельца, способны производить клеточную энергию только из глюкозы. Мозг также очень чувствителен к низкому уровню глюкозы в крови, потому что он использует только глюкозу для выработки энергии и функционирования (если только он не находится в условиях крайнего голодания).Около 70 процентов глюкозы, поступающей в организм в результате пищеварения, перераспределяется (печенью) обратно в кровь для использования другими тканями. Клетки, которым требуется энергия, удаляют глюкозу из крови с помощью транспортного белка в своих мембранах. Энергия глюкозы поступает из химических связей между атомами углерода. Энергия солнечного света требовалась для образования этих высокоэнергетических связей в процессе фотосинтеза. Клетки нашего тела разрывают эти связи и захватывают энергию для клеточного дыхания.Клеточное дыхание — это в основном контролируемое сжигание глюкозы по сравнению с неконтролируемым сжиганием. Клетка использует множество химических реакций на нескольких ферментативных этапах, чтобы замедлить высвобождение энергии (без взрыва) и более эффективно улавливать энергию, удерживаемую в химических связях в глюкозе.

Первая стадия распада глюкозы называется гликолизом. Гликолиз или расщепление глюкозы происходит в запутанной серии из десяти стадий ферментативных реакций. Второй этап распада глюкозы происходит в органеллах энергетической фабрики, называемых митохондриями.Один атом углерода и два атома кислорода удаляются, что дает больше энергии. Энергия этих углеродных связей переносится в другую область митохондрий, делая клеточную энергию доступной в той форме, которую клетки могут использовать.

Рисунок 4.10 Клеточное дыхание

Изображение Эллисон Калабрезе / CC BY 4.0

Клеточное дыхание — это процесс, при котором энергия улавливается из глюкозы.

Накопитель энергии

Если у тела уже достаточно энергии для поддержания своих функций, избыток глюкозы откладывается в виде гликогена (большая часть которого откладывается в мышцах и печени).Молекула гликогена может содержать более пятидесяти тысяч отдельных единиц глюкозы и сильно разветвлена, что обеспечивает быстрое распространение глюкозы, когда она необходима для выработки клеточной энергии.

Количество гликогена в организме в любой момент времени эквивалентно примерно 4000 килокалорий — 3000 в мышечной ткани и 1000 в печени. Продолжительное использование мышц (например, упражнения более нескольких часов) может истощить запас энергии гликогена. Помните, что это называется «ударом о стену» или «ударом о стену» и характеризуется утомляемостью и снижением производительности при выполнении упражнений.Ослабление мышц наступает потому, что для преобразования химической энергии жирных кислот и белков в полезную энергию требуется больше времени, чем для глюкозы. После продолжительных упражнений гликоген уходит, и мышцы должны больше полагаться на липиды и белки как на источник энергии. Спортсмены могут умеренно увеличить запас гликогена, снизив интенсивность тренировок и увеличив потребление углеводов до 60-70 процентов от общего количества калорий за три-пять дней до соревнований. Людям, которые не занимаются жесткими тренировками и предпочитают пробегать 5-километровый забег ради развлечения, не нужно есть большую тарелку макарон перед гонкой, поскольку без длительных интенсивных тренировок не произойдет адаптации повышенного гликогена в мышцах.

Печень, как и мышца, может накапливать энергию глюкозы в виде гликогена, но в отличие от мышечной ткани она жертвует накопленную энергию глюкозы другим тканям тела, когда уровень глюкозы в крови низкий. Примерно четверть общего содержания гликогена в организме находится в печени (что эквивалентно примерно четырехчасовому запасу глюкозы), но это сильно зависит от уровня активности. Печень использует этот запас гликогена как способ поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи.Когда запасы гликогена в печени истощаются, глюкоза образуется из аминокислот, полученных в результате разрушения белков, чтобы поддерживать метаболический гомеостаз.

Строительные макромолекулы

Хотя большая часть абсорбированной глюкозы используется для производства энергии, некоторая часть глюкозы превращается в рибозу и дезоксирибозу, которые являются важными строительными блоками важных макромолекул, таких как РНК, ДНК и АТФ. Глюкоза дополнительно используется для образования молекулы НАДФН, который важен для защиты от окислительного стресса и используется во многих других химических реакциях в организме.Если вся энергия, способность накапливать гликоген и потребности организма в наращивании удовлетворяются, избыток глюкозы может быть использован для производства жира. Вот почему диета с слишком высоким содержанием углеводов и калорий может прибавить лишнего веса — тема, которая будет обсуждаться в ближайшее время.

Рисунок 4.11 Химическая структура дезоксирибозы

Дезоксирибоза из молекулы сахара используется для построения основы ДНК. Изображение rozeta / CC BY-SA 3.0

Рис. 4.12 Двухцепочечная ДНК

Изображение Forluvoft / Public Domain

В ситуации, когда недостаточно глюкозы для удовлетворения потребностей организма, глюкоза синтезируется из аминокислот.Поскольку молекулы для хранения аминокислот отсутствуют, этот процесс требует разрушения белков, в первую очередь из мышечной ткани. Наличие достаточного количества глюкозы в основном предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

По мере повышения уровня глюкозы в крови использование липидов в качестве источника энергии подавляется. Таким образом, глюкоза дополнительно «сберегает жир». Это связано с тем, что повышение уровня глюкозы в крови стимулирует высвобождение гормона инсулина, который говорит клеткам использовать глюкозу (вместо липидов) для производства энергии.Достаточный уровень глюкозы в крови также предотвращает развитие кетоза. Кетоз — это нарушение обмена веществ, возникающее в результате повышения содержания кетоновых тел в крови. Кетоновые тела — это альтернативный источник энергии, который клетки могут использовать при недостаточном поступлении глюкозы, например, во время голодания. Кетоновые тела являются кислыми, и высокое содержание в крови может привести к тому, что она станет слишком кислой. Это редко встречается у здоровых взрослых, но может возникнуть у алкоголиков, людей, страдающих от недоедания, и у людей с диабетом 1 типа.Минимальное количество углеводов в рационе, необходимое для подавления кетоза у взрослых, составляет 50 граммов в день.

Углеводы имеют решающее значение для поддержки самой основной функции жизни — производства энергии. Без энергии не происходит ни один из других жизненных процессов. Хотя наш организм может синтезировать глюкозу, это происходит за счет разрушения белка. Однако, как и все питательные вещества, углеводы следует потреблять в умеренных количествах, поскольку их слишком много или слишком мало в рационе может привести к проблемам со здоровьем.


Учебная деятельность

Технологическая записка : Второе издание учебника «Открытые образовательные ресурсы по питанию человека» (OER) включает интерактивные учебные мероприятия. Эти упражнения доступны в веб-учебнике и недоступны в загружаемых версиях (EPUB, Digital PDF, Print_PDF или Open Document).

Учебные мероприятия можно использовать на различных мобильных устройствах, однако для максимального удобства пользователей настоятельно рекомендуется выполнять эти действия с помощью настольного или портативного компьютера и в Google Chrome.

Каким двум основным целям служат углеводы? | Здоровое питание

Мелоди Энн Обновлено 9 декабря 2018 г.

Углеводы необходимы для двух различных функций вашего тела — энергии и пищеварения. Большинство углеводов, таких как крахмал и сахар, распадаются на глюкозу, которая является простейшей формой углеводов и основным источником энергии для вашего тела. Клетчатка, другой вид углеводов, жизненно важна для нормального пищеварения; однако он не распадается на глюкозу.Почти все продукты в вашем рационе содержат углеводы, но обработанные продукты часто не содержат клетчатки.

Энергия

Углеводы могут быть простыми или сложными, но оба типа в конечном итоге превращаются в глюкозу. Простые углеводы — это сахара, которые могут встречаться в природе или добавляться в пищу. Натуральный сахар содержится во фруктах, молочных продуктах, овощах, бобовых и других цельных продуктах. Например, фруктоза — это простой углевод, содержащийся во фруктах. Добавленные сахара, такие как сахароза и декстроза, упаковываются в обработанные пищевые продукты, в которых, как правило, мало питательных веществ и много калорий.Во время пищеварения ферменты в тонкой кишке быстро превращают сахар в глюкозу и отправляют ее в кровоток для получения энергии.

Сложные углеводы — это крахмалы из картофеля, гороха, кукурузы, цельнозерновых и многих других продуктов. Крахмал проходит множество стадий превращения в пищеварительном тракте, прежде чем превратиться в глюкозу. Из-за разного времени прохождения через кишечник сахар дает вам быстрый прилив энергии, в то время как крахмалы обеспечивают более устойчивый уровень энергии.

Другие энергетические функции

Гормон инсулин помогает клеткам накапливать глюкозу из кровотока, чтобы они немедленно получали энергию для функционирования.Любая оставшаяся глюкоза превращается в сложный углевод, называемый гликогеном. В печени и мышцах накапливается достаточно гликогена, чтобы обеспечить до двух часов энергичной активности, сообщает Президентский совет по физической культуре и спорту. Когда запасы гликогена закончатся, вы, вероятно, почувствуете себя вялым и не сможете завершить свой распорядок дня.

Пищеварение

Нормальное пищеварение и функция кишечника зависят от адекватного потребления клетчатки. Клетчатка, один из видов сложных углеводов, поступает из растительных продуктов, таких как фрукты, овощи, бобовые и орехи.Растворимая клетчатка — это пластичная внутренняя часть клеточных стенок, которая удерживает воду. Его получают из мягких фруктов и бобов, а также из овсянки. Растворимая клетчатка связывается с водой в кишечнике, замедляя пищеварение и стабилизируя уровень сахара в крови.

Нерастворимая клетчатка — это жесткая часть клеточных стенок. Возможно, вам трудно пережевывать нерастворимую клетчатку, и она, как правило, сохраняет свою форму даже в стуле. Нерастворимая клетчатка ускоряет пищеварение, снимает запоры и делает стул мягким. Большинство волокнистых продуктов содержат оба типа клетчатки, но имеют более высокие концентрации одного типа по сравнению с другим.

Рекомендуемое потребление

Важно ежедневно потреблять достаточно углеводов, чтобы подпитывать вашу тренировку, а также повседневную активность. Согласно Руководству по питанию для американцев от 2010 г., ваш рацион должен на 45–65% состоять из углеводов. Для средней диеты, состоящей из 2000 калорий, это составляет от 225 до 325 граммов углеводов, потому что углеводы содержат 4 калории на грамм. Клетчатка имеет отдельную рекомендацию, так как она не превращается в глюкозу. Вам нужно 14 граммов клетчатки на каждые 1000 калорий в вашем рационе.Если вы соблюдаете диету, состоящую из 2000 калорий, вы должны получать 28 граммов клетчатки каждый день.

Углеводы | Американская кардиологическая ассоциация

Углеводы, белок, жир и алкоголь — все это источники калорий в рационе. Все эти макроэлементы могут быть частью здорового питания. Баланс калорий, которые мы потребляем, и калорий, которые мы сжигаем каждый день, может помочь нам поддерживать, набирать или худеть. Узнайте несколько советов по включению углеводов в свой рацион.

Не все углеводы одинаковы

Пища содержит три типа углеводов: сахар, крахмал и клетчатку.Углеводы называют простыми или сложными, в зависимости от химической структуры пищи и того, насколько быстро сахар переваривается и всасывается. Тип углеводов, которые вы едите, имеет значение — продукты, содержащие большое количество простых сахаров, особенно фруктозы, повышают уровень триглицеридов. Триглицериды (или жиры в крови) являются важным барометром метаболического здоровья; высокие уровни могут быть связаны с ишемической болезнью сердца, диабетом и ожирением печени.

  • Простые углеводы быстро перевариваются и немедленно отправляют выбросы глюкозы (энергии) в кровоток.Вот почему вы можете почувствовать прилив энергии, когда съедаете десерт, но за ним следует приступ усталости, когда этот внезапный прилив энергии иссякает. Простой сахар содержится в рафинированном сахаре, например, в белом сахаре в сахарнице. Добавленный сахар (включая рафинированный) обеспечивает калорийность, но ему не хватает витаминов, минералов и клетчатки, что может привести к увеличению веса.

    Но не все простые сахара одинаковы. Простой сахар также содержится в более питательных продуктах, таких как фрукты и молоко.Это «естественных» сахаров и, в отличие от рафинированных сахаров, эти сахара часто содержат витамины, минералы и клетчатку, которые нужны нашему организму.

  • Сложные углеводы перевариваются медленнее и обеспечивают более низкое и более стабильное высвобождение глюкозы в кровоток. Как и в случае с простыми сахарами, некоторые продукты со сложными углеводами являются лучшим выбором, чем другие.

    Очищенные зерна, такие как белая мука и белый рис, были обработаны, что удаляет многие питательные вещества и клетчатку.Многие продукты, содержащие очищенные зерна, такие как белая мука, сахар и белый рис, не имеют витамина B и других важных питательных веществ, если они не помечены как «обогащенные». Напротив, неочищенные цельные зерна содержат многие из этих жизненно важных питательных веществ и богаты клетчаткой, которая помогает вашей пищеварительной системе хорошо работать. Клетчатка помогает вам чувствовать себя сытым, поэтому вероятность переедания этих продуктов снижается. Это объясняет, почему вы будете чувствовать сытость дольше после того, как съедите тарелку овсянки, по сравнению с тем же количеством калорий в сладких конфетах.

Зачем мне углеводы?

Когда вы едите углеводы, ваше тело расщепляет их на простые сахара, которые попадают в кровоток. Когда уровень сахара в организме повышается, поджелудочная железа вырабатывает гормон, называемый инсулином. Инсулин необходим для перемещения сахара из крови в клетки, где сахар может использоваться в качестве источника энергии.


Когда этот процесс идет быстро — например, с простыми сахарами, такими как сахаросодержащие напитки и высококалорийные десерты, — вы, скорее всего, вскоре снова проголодаетесь.

Когда это происходит медленнее, как в случае цельнозерновой пищи, вы будете чувствовать себя удовлетворенным дольше, потому что вашему организму требуется больше времени, чтобы расщепить сложные углеводы цельнозерновых на простые сахара. Эти сложные углеводы дают вам энергию в течение более длительного периода времени.

Углеводы в некоторых продуктах (в основном те, которые содержат много простых сахаров) вызывают более быстрое повышение уровня сахара в крови, чем другие. Насколько быстро или медленно углеводы превращаются в глюкозу крови, измеряется гликемическим индексом.Если вы здоровы, углеводы превращаются в глюкозу (сахар в крови), которую ваше тело использует для получения энергии. Но если уровень глюкозы в крови становится слишком высоким или слишком низким, это может быть признаком того, что у вашего тела могут возникнуть проблемы с производством инсулина, который ему необходим для поддержания здоровья, что в конечном итоге может привести к диабету.

Простые углеводы, содержащиеся в обработанном, рафинированном или добавленном сахаре, которые не содержат никакой пищевой ценности, включают:

  • Конфеты
  • Обычные (недиетические) газированные напитки, например газированные напитки
  • Сиропы
  • Сахар столовый
  • Сахар добавлен

Сложные углеводы, часто называемые «крахмалистыми» продуктами, включают:

  • Бобовые
  • Крахмалистые овощи
  • Цельное зерно и клетчатка

Попытайтесь получить углеводы, витамины и другие питательные вещества в максимально возможной форме.Например, наслаждайтесь фруктами вместо безалкогольных напитков и старайтесь есть цельнозерновые продукты вместо переработанной муки

Итак, когда дело доходит до углеводов, следуйте этим рекомендациям:

  1. Ограничьте количество продуктов с высоким содержанием обработанных, очищенных простых сахаров, которые содержат калории, но в них очень мало питательных веществ.
  2. Получайте больше сложных углеводов и полезных питательных веществ, употребляя больше фруктов и овощей.
  3. Сделайте упор на цельнозерновые рис, хлеб и крупы и не забывайте о бобовых — фасоли, чечевице и сушеном горохе.

Углеводы — Как работает еда

Вы, наверное, слышали о «углеводах» и «сложных углеводах». Углеводы являются основным топливом для вашего тела. Ваше тело думает об углеводах, как двигатель автомобиля думает о бензине.

Самый простой углевод — , глюкоза . Глюкоза, также называемая «сахар в крови» и «декстроза», течет в кровотоке, поэтому доступна каждой клетке вашего тела. Ваши клетки поглощают глюкозу и преобразуют ее в энергию, чтобы управлять клеткой.В частности, набор химических реакций с глюкозой создает АТФ (аденозинтрифосфат), а фосфатная связь в АТФ приводит в действие большинство механизмов в любой клетке человека. Если вы выпьете раствор воды и глюкозы, глюкоза перейдет прямо из пищеварительной системы в кровоток.

Слово «углевод» происходит от того факта, что глюкоза состоит из углерода и воды. Химическая формула глюкозы:

. Как видите, глюкоза состоит из шести атомов углерода (карб…) и элементы шести молекул воды (… гидрат). Глюкоза — это простой сахар , что означает, что для нашего языка он сладкий на вкус. Есть и другие простые сахара, о которых вы, наверное, слышали. Фруктоза — это основной сахар во фруктах. Фруктоза имеет ту же химическую формулу, что и глюкоза (C 6 H 12 O 6 ), но атомы расположены немного иначе. Печень превращает фруктозу в глюкозу. Сахароза, также известная как «белый сахар» или «столовый сахар», состоит из одной глюкозы и одной молекулы фруктозы, связанных вместе.Лактоза (сахар, содержащийся в молоке) состоит из одной молекулы глюкозы и одной молекулы галактозы, связанных вместе. Галактоза, как и фруктоза, имеет те же химические компоненты, что и глюкоза, но атомы расположены по-другому. Печень также превращает галактозу в глюкозу. Мальтоза, сахар, содержащийся в солоде, состоит из двух атомов глюкозы, связанных вместе.

Глюкоза, фруктоза и галактоза — это моносахаридов и единственные углеводы, которые могут всасываться в кровоток через слизистую оболочку кишечника.Лактоза, сахароза и мальтоза — это дисахаридов (они содержат два моносахарида) и легко превращаются в их моносахаридные основания ферментами в пищеварительном тракте. Моносахариды и дисахариды называются простыми углеводами . Это тоже сахар — все они сладкие на вкус. Все они быстро перевариваются и быстро попадают в кровоток. Когда вы смотрите на этикетку «Пищевая ценность» на упаковке продуктов и видите «Сахар» в разделе «Углеводы» на этикетке, эти простые сахара — это то, о чем этикетка говорит.

Есть также сложных углеводов , широко известных как «крахмалы». Сложный углевод состоит из цепочек молекул глюкозы. Крахмал — это способ хранения энергии в растениях: растения производят глюкозу и связывают молекулы глюкозы в цепочку, образуя крахмал. Большинство зерновых (пшеница, кукуруза, овес, рис) и таких вещей, как картофель и бананы, содержат много крахмала. Ваша пищеварительная система расщепляет сложный углевод (крахмал) на составляющие его молекулы глюкозы, чтобы глюкоза могла попасть в ваш кровоток.Однако расщепление крахмала занимает намного больше времени. Если вы выпьете банку газировки, полную сахара, глюкоза будет попадать в кровоток со скоростью около 30 калорий в минуту. Сложный углевод переваривается медленнее, поэтому глюкоза попадает в кровоток со скоростью всего 2 калории в минуту (справочная информация).

Возможно, вы слышали, что употребление сложных углеводов — это хорошо, а сахар — плохо. Возможно, вы даже почувствовали это на собственном теле. Следующая цитата из Йельского руководства по детскому питанию объясняет, почему:

Если сложные углеводы расщепляются на моносахариды в кишечнике до того, как они всасываются в кровоток, почему они лучше, чем рафинированный сахар или другие ди- или моносахариды? В значительной степени это связано с процессами пищеварения и всасывания.Простой сахар требует небольшого переваривания, и когда ребенок ест сладкую пищу, например шоколадный батончик или банку газировки, уровень глюкозы в крови быстро повышается. В ответ поджелудочная железа выделяет большое количество инсулина, чтобы уровень глюкозы в крови не повышался слишком высоко. Этот сильный инсулиновый ответ, в свою очередь, приводит к снижению уровня сахара в крови до слишком низкого уровня через 3-5 часов после употребления шоколадного батончика или банки содовой. Эта тенденция к падению уровня глюкозы в крови может затем привести к выбросу адреналина, который, в свою очередь, может вызвать нервозность и раздражительность…. То же самое «американские горки» на уровне глюкозы и гормонов не происходит после употребления сложных углеводов или после сбалансированной еды, потому что процессы пищеварения и абсорбции намного медленнее.

Если задуматься, это невероятно интересно, потому что показывает, что продукты, которые вы едите, и то, как вы их едите, могут повлиять на ваше настроение и ваш темперамент. Пища делает это, влияя на уровни различных гормонов в вашем кровотоке с течением времени.

Еще одна интересная вещь в этой цитате — это упоминание о инсулине .Оказывается, инсулин невероятно важен для того, как организм использует глюкозу, которую обеспечивает пища. Функции инсулина:

  • Обеспечение транспортировки глюкозы через клеточные мембраны
  • Преобразование глюкозы в гликоген для хранения в печени и мышцах
  • Помогать превращению избытка глюкозы в жир
  • Предотвращать расщепление белков для получения энергии

Согласно Британской энциклопедии:

Инсулин — это простой белок, в котором две полипептидные цепи аминокислот соединены дисульфидными связями.Инсулин помогает переносить глюкозу в клетки, чтобы они могли окислять глюкозу для производства энергии для организма. В жировой ткани инсулин способствует хранению глюкозы и ее превращению в жирные кислоты. Инсулин также замедляет расщепление жирных кислот. В мышцах он способствует усвоению аминокислот для производства белков. В печени он помогает преобразовывать глюкозу в гликоген (запасной углевод животных) и снижает глюконеогенез (образование глюкозы из неуглеводных источников).Действию инсулина противодействуют глюкагон, другой гормон поджелудочной железы, и адреналин.

Из этого описания вы можете понять, что на самом деле в вашем организме происходит много разных вещей, связанных с глюкозой. Поскольку глюкоза является основным источником энергии для вашего тела, ваше тело имеет множество различных механизмов, обеспечивающих необходимый уровень глюкозы в кровотоке. Например, ваш организм хранит глюкозу в печени (в виде гликогена) и при необходимости может преобразовывать белок в глюкозу.Углеводы обеспечивают энергию, необходимую клеткам для выживания.

Для получения дополнительной информации об углеводах, глюкозе и инсулине перейдите по ссылкам в конце этой статьи.

Определение и примеры углеводов — Биологический онлайн-словарь

Углеводы
существительное
множественное число: углеводы
[car · bo · hy · drate, kɑːbəʊˈhaɪdɹeɪt]
Определение: любое из группы органических соединений, состоящих из углерода, водорода , и кислород, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 O) n

Определение углеводов

Биомолекула относится к любой молекуле, которая производится живые организмы.Таким образом, большинство из них являются органическими молекулами. Четыре основные группы биомолекул включают аминокислоты и белки, углеводы (особенно полисахариды), липиды и нуклеиновые кислоты. Углевод относится к любой группе органических соединений, состоящей из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 O) n . Углеводы являются наиболее распространенными среди основных классов биомолекул.

Углеводы (определение биологии): любое из группы органических соединений, состоящих из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1, отсюда общая формула: C n (H 2 О) . Синонимы: сахарид, карб.

Характеристики углеводов

Углеводы — это органические соединения. Органическое соединение — это соединение, которое, как правило, содержит углерод, ковалентно связанный с другими атомами, особенно углерод-углерод (C-C) и углерод-водород (C-H). Углеводы являются примером многих типов органических соединений. Его четыре основных составляющих элемента — это углерод, водород, кислород и азот. Большинство из них следуют общей формуле: C n (H 2 O) n , откуда они и получили свое название, углеводов (что означает гидратов углерода ).Это потому, что отношение атомов водорода к атомам кислорода часто составляет 2: 1. Однако не все углеводы соответствуют этой формуле. По сути, они представляют собой органические соединения, которые представляют собой альдегиды или кетоны с добавлением многих гидроксильных групп, обычно на каждый атом углерода, не являющийся частью функциональной группы альдегида или кетона.

Углеводы — это биомолекулы, богатые энергией . Они являются одними из основных питательных веществ, необходимых многим живым организмам, поскольку обеспечивают организм источником химической энергии.АТФ — это химическая энергия, вырабатываемая в ходе метаболических процессов клеточного дыхания. Вкратце, глюкоза (моносахарид) «сбивается» для извлечения энергии, прежде всего в форме АТФ. Во-первых, ряд реакций приводит к превращению глюкозы в пируват. Затем он использует пируват, превращая его в ацетилкофермент А для окисления посредством циклической реакции, управляемой ферментами, которая называется цикл Кребса . Наконец, каскад реакций ( окислительно-восстановительных реакций, ) с участием цепи переноса электронов приводит к производству АТФ (посредством хемиосмоса). 1 Молекулы глюкозы, используемые в гликолизе, происходят из углеводсодержащей диеты. Сложные углеводы расщепляются на более простые моносахариды, такие как глюкоза, путем осахаривания во время пищеварения.
Углеводы — один из основных источников питания животных, в том числе человека. Однако многие другие углеводы находятся в форме волокон. И как клетчатка, она не переваривается людьми. Обычно волокнистые углеводы включают слизи, пектины, камеди и нерастворимые компоненты, такие как те, которые содержатся в лигнине и целлюлозе.Жвачные животные, такие как крупного рогатого скота , овец , оленей и коз , способны переваривать растительные материалы, которые в противном случае неудовлетворительны для человека. Некоторые симбиотические бактерии (например, Ruminococcus , Fibrobacter , Streptococcus , Escherichia ) обитают в их рубце, которые могут разлагать целлюлозные материалы до более простых углеводов для жвачных животных.

Классификация углеводов

Многие углеводы представляют собой полимеры .Полимер представляет собой соединение, состоящее из нескольких повторяющихся звеньев ( мономеров, ) или протомеров и полученное путем полимеризации . Сахарид — структурная (мономерная) единица углеводов. Углеводы можно разделить на моносахаридов , дисахаридов , олигосахаридов и полисахаридов на основе количества сахаридных единиц.
Самый фундаментальный тип — это простые сахара, называемые моносахаридами .Эти простые сахара могут сочетаться друг с другом, образуя более сложные типы. Примерами являются глюкоза , галактоза и фруктоза . Комбинация двух простых сахаров называется дисахаридом . Примерами являются сахароза , мальтоза и лактоза . Углеводы, состоящие из трех-десяти простых сахаров, называются олигосахаридами . Примерами являются рафиноза , мальтотриоза и мальтотетраоза .Углеводы, состоящие из нескольких сахаридных единиц, называются полисахаридами . Когда полисахарид состоит из сахаридных единиц одного и того же типа, он упоминается как гомополисахарид (или гомогликан), тогда как полисахарид состоит из более чем одного типа сахаридов, он называется гетерополисахаридом (или гетерогликаном). Примерами полисахаридов являются крахмал , целлюлоза и гликоген .
С точки зрения питания углеводы подразделяются на две основные группы пищевых продуктов: простые и сложные . Простые углеводы — иногда называемые просто «сахаром» — это те углеводы, которые легко перевариваются и служат быстрым источником энергии. Сложные углеводы — это те углеводы, которым требуется больше времени для переваривания и метаболизма. Они часто богаты клетчаткой и, в отличие от простых углеводов, с меньшей вероятностью вызывают скачки сахара в крови.

Функции углеводов

Как отмечалось ранее, одна из основных функций углеводов — обеспечивать организм энергией.В частности, моносахариды являются основным источником энергии для обмена веществ. Когда они еще не нужны, они превращаются в полисахариды, запасающие энергию, такие как крахмал у растений и гликоген у животных.

В растениях крахмал присутствует в большом количестве в амилопластах внутри клеток различных органов растений, например плоды, семена, корневища и клубни. У животных гликоген накапливается в печени и мышечных клетках.
Кроме того, углеводы также являются важными структурными компонентами.

На клеточном уровне полисахариды (например, целлюлоза ) являются составными частями клеточных стенок растительных клеток и многих водорослей . Клетки без клеточных стенок более подвержены структурным и механическим повреждениям. У растений клеточная стенка предотвращает разрыв клетки в гипотоническом растворе.

Осмотическое давление заставляет воду диффундировать в клетку. Клеточная стенка сопротивляется осмотическому давлению и тем самым предотвращает разрыв клетки.

В стенках бактериальных клеток структурный углевод является мышиным, тогда как в грибах полисахарид хитин является компонентом клеточной стенки.У некоторых бактерий есть полисахаридная «капсула», которая помогает им уклоняться от обнаружения иммунными клетками. У некоторых животных есть экзоскелеты из хитина, которые обеспечивают силу и защиту мягкотелым животным.

Нуклеиновые кислоты, такие как РНК и ДНК, содержат сахарный компонент, то есть рибозу и дезоксирибозу соответственно. Многие другие биологические молекулы также содержат сахарные компоненты, такие как гликопротеины, гликолипиды, протеогликаны, которые, в свою очередь, выполняют жизненно важные роли, например в иммунном ответе, детоксикации, свертывании крови, оплодотворении, биологическом распознавании, и т. д. .

Общие биологические реакции с участием углеводов

Ниже приведены некоторые из общих биологических реакций с участием углеводов.

Фотосинтез

У растений и других фотосинтетических автотрофов синтез простых сахаров (например, глюкозы) осуществляется посредством фотосинтеза . В этом процессе используются углекислый газ, вода, неорганические соли и световая энергия (солнечного света), захваченная светопоглощающими пигментами, такими как хлорофилл и другие вспомогательные пигменты, для производства молекул глюкозы, воды и кислорода.

Процесс фотосинтеза

Дегидратационный синтез

Моносахарид образует углеводы, соединяясь вместе в гликозидные связи посредством процесса, называемого дегидратационным синтезом . Например, при образовании дисахарида соединение двух моносахаридов приводит к выделению воды в качестве побочного продукта. Точно так же полисахариды образуются из длинной цепи моносахаридных единиц в процессе дальнейшей дегидратации. Образующиеся крахмал и гликоген служат молекулами, богатыми энергией.Эти сложные углеводы расщепляются на более простые формы (например, глюкозу), когда организму требуется больше энергии. Этот процесс называется осахариванием.

Осахаривание

Процесс, при котором сложные углеводы разлагаются до более простых форм, таких как глюкоза, называется осахариванием. Влечет за собой гидролиз . У людей и других высших животных это связано с ферментативным действием. Во рту глюкозосодержащие сложные углеводы расщепляются на более простые формы под действием амилазы слюны .В тонком кишечнике продолжается переваривание сложных углеводов. Ферменты, такие как мальтаза , лактаза и сахараза , расщепляют дисахариды на моносахаридные составляющие. Глюкозидазы представляют собой другую группу ферментов, которые катализируют удаление концевой глюкозы из полисахарида, состоящего в основном из длинных цепей глюкозы.

Ассимиляция

Моносахариды из переваренных углеводов абсорбируются эпителиальными клетками тонкого кишечника.Клетки забирают их из просвета кишечника через систему симпорта ионов натрия и глюкозы (через транспортеры глюкозы или GluT). GluT — это белки, облегчающие транспортировку моносахаридов, таких как глюкоза, в клетку. Затем они высвобождаются в капилляры за счет облегченной диффузии . Клетки тканей снова забирают их из кровотока через GluT. Находясь внутри клетки, глюкоза фосфорилируется, чтобы удерживать ее внутри клетки. В результате глюкозо-6-фосфат может использоваться в любом из следующих метаболических путей: (1) гликолиз, чтобы синтезировать химическую энергию, (2) гликогенез, когда глюкоза доставляется в печень через портовые вены, чтобы быть хранится в виде клеточного гликогена или (3) пентозофосфатного пути с образованием НАДФН для синтеза липидов и пентоз для синтеза нуклеиновых кислот.

Клеточное дыхание

Глюкоза метаболизируется клеткой в ​​процессе, который называется клеточное дыхание . Основными этапами или процессами клеточного дыхания являются (1) гликолиз, (2) цикл Кребса и (3) окислительное фосфорилирование. На начальном этапе (например, гликолиз , ) серия реакций в цитозоле приводит к превращению моносахарида, часто глюкозы, в пируват и сопутствующему производству относительно небольшого количества высокоэнергетических биомолекул, таких как АТФ. .Также производится НАДН, молекула , переносящая электроны, . В присутствии достаточного количества кислорода пируват в результате гликолиза превращается в органическое соединение, которое полностью окисляется внутри митохондрии. Электронные носители (например, NADH и FADH 2 ) перемещают электроны по цепи переноса электронов . По всей цепи происходит серия окислительно-восстановительных реакций, завершающихся на конечном акцепторе электронов , то есть молекулярном кислороде. Больше АТФ продуцируется посредством механизма связывания посредством хемиосмоса во внутренней митохондриальной мембране.

Из одного только гликолиза чистый АТФ равен двум (из-за фосфорилирования на уровне субстрата). При окислительном фосфорилировании чистый АТФ составляет примерно 34. Таким образом, общий чистый АТФ на глюкозу составляет примерно 36. 2 При отсутствии или недостаточности кислорода происходит анаэробный катаболизм (например, путем ферментации). Ферментация — это анаэробный процесс, при котором в результате гликолиза образуется АТФ. Однако вместо того, чтобы перемещать электроны в цепи переноса электронов, НАДН передает электроны пирувату, восстанавливая НАД + , который поддерживает гликолиз. 2 Общее количество АТФ, произведенных на глюкозу в результате ферментации, составляет всего около двух.

Читать: Клеточное дыхание — Гликолиз

Глюконеогенез

Глюконеогенез кажется обратным гликолизу: глюкоза превращается в пируват, тогда как при глюконеогенезе пируват превращается в глюкозу. По сути, глюконеогенез — это метаболический процесс, при котором глюкоза образуется из неуглеводных предшественников, например пируват , лактат , глицерин и глюкогенные аминокислоты .У человека и многих других позвоночных глюконеогенез происходит в основном в клетках печени. Это часто происходит во время голодания, низкоуглеводных диет или интенсивных физических упражнений. Цитологически процесс начинается в митохондриях, затем заканчивается в просвете эндоплазматической сети. Глюкоза, образованная при гидролизе глюкозо-6-фосфата ферментом глюкозо-6-фосфатазой, перемещается из эндоплазматического ретикулума в цитоплазму.

Гликогенез

Гликогенез — это метаболический процесс производства гликогена из глюкозы для хранения в основном в клетках печени и мышц в ответ на высокие уровни глюкозы в кровотоке.Короткие полимеры глюкозы, особенно экзогенная глюкоза , превращаются в длинные полимеры, которые хранятся внутри клеток, главным образом в печени и мышцах. Когда организму требуется метаболическая энергия, гликоген расщепляется на субъединицы глюкозы в процессе гликогенолиза. Таким образом, гликогенез — это процесс , противоположный процессу гликогенолиза .

Гликогенолиз

Гликогенолиз — это процесс расщепления накопленного гликогена в печени, чтобы глюкоза могла быть произведена для использования в энергетическом обмене.Накопленный в клетках печени гликоген расщепляется на предшественники глюкозы. Отдельная молекула глюкозы отсекается от гликогена и превращается в глюкозо-1-фосфат , который, в свою очередь, превращается в глюкозо-6-фосфат , который может участвовать в гликолизе .

Пентозофосфатный путь

Пентозофосфатный путь — это путь метаболизма глюкозы, в котором пятиуглеродные сахара (пентозы) и НАДФН синтезируются в цитозоле.Путь пентозофосфата служит альтернативным метаболическим путем при расщеплении глюкозы. У животных это происходит в печени, коре надпочечников, жировой ткани, семенниках и т. Д. Этот путь является основным путем метаболизма нейтрофилов. Таким образом, врожденная недостаточность этого пути вызывает чувствительность к инфекции. У растений часть этого пути участвует в образовании гексоз из углекислого газа в процессе фотосинтеза.

Путь Лелуара (метаболизм галактозы)

В этом метаболическом пути галактоза вступает в гликолиз, сначала фосфорилируясь с помощью фермента галактокиназы , а затем превращаясь в глюкозо-6-фосфат .Галактоза производится из лактозы (молочный сахар, состоящий из молекулы глюкозы и молекулы галактозы).

Фруктозо-1-фосфатный путь

В этом метаболическом пути фруктоза вместо глюкозы вступает в гликолиз. Тем не менее, фруктоза требует дополнительных шагов до начала гликолиза. У животных это происходит в мышцах, жировой ткани и почках.

Глюкорегуляция

Правильный метаболизм углеводов необходим для правильного усвоения и катаболизма углеводов в организме.Поддержание постоянного уровня глюкозы в организме называется глюкорегуляцией . Гормоны поджелудочной железы, такие как инсулин и глюкагон, регулируют правильный метаболизм глюкозы. Уровень сахара в крови означает количество глюкозы, циркулирующей в организме. Когда уровень глюкозы в крови низкий, глюкагон высвобождается. И наоборот, высокий уровень глюкозы в крови стимулирует высвобождение инсулина. Инсулин регулирует метаболизм углеводов (а также жиров), способствуя захвату глюкозы из кровотока в скелетные мышцы и жировые ткани, которые хранятся в виде гликогена для последующего использования при гликогенолизе.Глюкагон, в свою очередь, стимулирует производство сахара. В частности, он заставляет хранящийся в печени гликоген превращаться в глюкозу, которая попадает в кровоток.
Неправильный углеводный обмен может привести к определенным метаболическим заболеваниям или нарушениям, например сахарный диабет, непереносимость лактозы, галактоземия, болезнь накопления гликогена и мальабсорбция фруктозы.

Попробуйте ответить на приведенный ниже тест, чтобы проверить, что вы узнали об углеводах.

Следующий

Простые и сложные углеводы — разница между простыми сахарами и крахмалом

Углеводы — это сахара, которые бывают двух основных форм — простых и сложных. Это также называют простым сахаром и крахмалом.

Разница между простым и сложным углеводом заключается в том, как быстро он переваривается и всасывается, а также в его химической структуре.

Большинство углеводов может быть расщеплено на глюкозу, и это углеводы, которые мы рассмотрим в этой статье.

Примеры углеводов, которые не полностью расщепляются на глюкозу, см. В разделе «Нерастворимая клетчатка и сахарные спирты»

Простые углеводы

Простые углеводы называются простыми сахарами. Сахар содержится в различных натуральных источниках пищи, включая фрукты, овощи и молоко, и придает пище сладкий вкус. Но они также быстро повышают уровень глюкозы в крови.

Сахара можно отнести к категории одинарных сахаров (моносахаридов), которые включают глюкозу, фруктозу и галактозу, или двойных сахаров (дисахаридов), которые включают сахарозу (столовый сахар), лактозу и мальтозу.

Многие обработанные пищевые продукты содержат добавленный сахар, но в настоящее время в Великобритании нет закона, который требовал бы от производителей указывать, сколько сахара было добавлено при переработке.

Национальная служба здравоохранения рекомендует взрослым потреблять менее 70 г сахара в день для мужчин и младше 50 г сахара в день для женщин Однако люди с диабетом получат пользу от повышения уровня глюкозы в крови, если потребление сахара можно будет ограничить до более низкого уровня.

Поскольку сахар не обеспечивает питания, кроме энергии (поэтому его часто называют пустыми калориями), людям, желающим похудеть, также будет полезно исключить источники добавленного сахара из своего рациона.

Обратите внимание, что если вы подвержены риску гипогликемии, никогда не беспокойтесь о приеме сахара, если это необходимо для предотвращения или лечения гипогликемии

Сложные углеводы

Сложные углеводы, также известные как полисахариды, представляют собой крахмалы, образованные более длинными сахаридными цепями, что означает им требуется больше времени, чтобы сломаться.

Химически они обычно состоят из трех или более связанных сахаров.

Строго говоря, термин сложный углевод относится к любым крахмалам, включая высокоочищенные крахмалы, содержащиеся в:

  • Белый хлеб
  • Пироги
  • Большинство кондитерских изделий и
  • Многие другие источники пищи

Когда диетологи и диетологи советуют иметь сложные углеводы, однако, они обычно относятся к цельнозерновым продуктам и крахмалистым овощам, которые усваиваются медленнее, чем рафинированные углеводы.

Цельнозерновые продукты

Цельнозерновые крахмалы включают зерна и ядра пшеницы, которые обеспечивают большую часть клетчатки и питательных веществ, содержащихся в крахмалистых продуктах.

Когда дело доходит до выбора крахмалистых продуктов, таких как рис, хлеб и любые другие продукты из муки, лучше всего выбирать цельнозерновые версии этих продуктов.

Хотя цельнозерновые продукты влияют на уровень глюкозы в крови медленнее, чем другие формы углеводов, более высокие уровни углеводов могут существенно повысить уровень сахара в крови.

Определение уровня глюкозы в крови перед едой и приемом пищи — хороший способ оценить, с каким количеством углеводов ваше тело может адекватно справиться.

Рафинированные углеводы

Рафинированные углеводы — это переработанные углеводы.

В зерновых продуктах отруби и ядра отделяются, остается только крахмал. Когда таким образом удаляется большая часть клетчатки, углеводы расщепляются организмом быстрее и иногда могут повышать уровень глюкозы в крови так же быстро, как и простые сахара.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *