Разное

Три вида радиоактивных лучей: Виды радиоактивных излучений – кратко свойства, формула и характеристики (11 класс)

Содержание

Ионизирующее излучение, последствия для здоровья и защитные меры

Что такое ионизирующее излучение? 

Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа). Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения. Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.

Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.

Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду. Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины.

Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов. Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).

Источники излучения

Люди каждый день подвергаются воздействию естественного и искусственного излучения. Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе. Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.

Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте. В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения.

Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.

На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.

Воздействие ионизирующего излучения

Воздействие излучения может быть внутренним или внешним и может происходить различными путями.

Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.

Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.

Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием). Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.

Люди могут подвергаться воздействию ионизирующего излучения в различных обстоятельствах: дома или в общественных местах (облучение в общественных местах), на своих рабочих местах (облучение на рабочем месте) или в медицинских учреждениях (пациенты, лица, осуществляющие уход, и добровольцы).

Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.

Первый случай — это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.

Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.

Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.

На медицинское использование излучения приходится 98% всей дозы облучения из всех искусственных источников; оно составляет 20% от общего воздействия на население.  Ежегодно в мире проводится 3 600 миллионов радиологических обследований в целях диагностики, 37 миллионов процедур с использованием ядерных материалов и 7,5 миллиона процедур радиотерапии в лечебных целях.

Последствия ионизирующего излучения для здоровья

Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).

Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей. 

Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год. 

Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).

Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения. Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.

Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв. В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).

Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности. Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует. Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.

Деятельность ВОЗ

ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.

В соответствии с основной функцией, касающейся «установления норм и стандартов, содействия в их соблюдении и соответствующего контроля» ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.

 

Урок «Радиоактивность. Виды радиоактивного излучения»

Дата______        Класс 9                                Урок № 48                          

Тема: Радиоактивность. Виды радиоактивного излучения, их физическая природа и свойства

                                                                                                                                       Цель ввести понятие радиоактивности, изучить историю открытия данного явления, характеристики видов излучения, формирование представления о явлении радиоактивности, о физической природе  и свойствах α-, β-, γ-излучений;  углубить знания учащихся о структуре атома.

   Развивать логическое мышление.  Формировать мыслительные операции: умение делать выводы из представленного материала, сравнивать и сопоставлять характеристики видов излучений, устанавливать сходство и различие, осмысливать учебный материал и глубину изучения данных вопросов, наблюдать и анализировать природные явления, развивать интерес к предмету, расширить кругозор учащихся

     Воспитывать стремление к овладению знаниями и уважение к друг другу, любовь к природе.

                                                                                                                                                 

Тип урока: Комбинированный.                                                                                                   

Оборудование: ноутбук, учебник, презентация «

Радиоактивность. Виды радиоактивных излучений». периодическая таблица Менделеева Д.И.

Ход урока

I.        Организационный этап. Приветствие, проверка присутствующих. Объяснение хода урока. (Можно использовать метод « Разминка»)                                                                                                                                                                                                                                  2. Проверка домашнего задания.  Учитель выборочно проверяет письменное домашнее задание у 3-4 человек или привлекает к проверке учащихся с высоким уровнем подготовки.                                                                                                                               —Фронтальный опрос: (Можно использовать методы  «Ключевые слова», «Гирлянда вопросов», »Цепочка», «Пресс», Тест «Да-Нет».

)
  1. Мотивация и актуализация знаний

Слова радиоактивности, радиоактивного излучения, радиоактивные элементы знают сегодня все. Все знают об опасности радиоактивных излучений.  Но многие, наверное, знают и то, что радиоактивные излучения служат человеку: они позволяют в ряде случаев поставить правильный диагноз болезни, лечат опасные заболевания, повышают урожайность культурных растений.    Создаётся проблемная ситуация

Что такое радиоактивность? Какова его физическая природа? В чём заключается его опасность? Сегодня на уроке мы это узнаем 

Для того чтобы стало понятно, что такое радиоактивность нужно вспомнить некоторые вопросы, которые мы уже изучили ранее на уроках физики.

Что происходит с заряженной частицей, влетевшей в магнитное поле? (на неё действует сила Лоренца, формула силы Лоренца)

Как определить направление силы Лоренца? (по правилу левой руки)

Каково строение атомного ядра? (ядра всех химических элементов состоят из нуклонов: протонов и нейтронов)

Чему равно число протонов в ядре? (порядковый номер в таблице Менделеева)

Как условно обозначаются ядра химических элементов?

Z – зарядовое число, которое показывает число протонов в ядре (порядковый номер в таблице Менделеева)

А — массовое число, которое показывает число нуклонов в ядре A = N + Z, где N – число нейтронов в ядре

План изучения темы:

  III.

Изучение нового материала. Его восприятие. Осмысление.                 

Радиоактивность представляет собой способность некоторых химических элементов самопроизвольно к излучению.

Радиоактивным распадом называется естественное радиоактивное превращение ядер, происходящее самопроизвольно.

Историческая справка.  Изучая соли урана, французский учёный Анри Беккерель сделал вывод, что соли урана самопроизвольно, без влияния внешних факторов создают какое-то излучение.

26-27 февраля 1896 года Беккерель приготовил несколько образцов кристаллов и прикрепил их к завернутым в бумагу фотопластинкам. Однако в эти дни стояла пасмурная погода, и Беккерель решил отложить опыт. Он считал, что ему необходим яркий солнечный свет. Пластинки были спрятаны в ящик стола и пролежали там около трех дней. Лишь 1 марта, Беккерель решил их проявить, ожидая в лучшем случае, увидеть слабые изображения. Но все оказалось наоборот: изображения были очень четкими. Таким образом, какое-то излучение испускалось солями урана безо всякого освещения светом. 

 Беккерель продолжил исследования солей урана, однако он не понимал природы этого излучения. Однажды, демонстрируя своему гостю излучение урановых образцов, он задал ему вопрос в виде просьбы: «Ведь вы физик и химик одновременно. Проверьте, нет ли в этих излучающих телах примесей, которые могли бы играть особенную роль». И этот вопрос стал научной программой исследований молодой четы: Пьера Кюри (1859 – 1906) и его жены Марии Склодовской-Кюри (1867 – 1934). Двумя годами позднее, супруги Пьер и Мария Кюри, доказали, что аналогичным свойством обладает химический элемент торий Th-232. Затем они же открыли новые, ранее неизвестные элементы – полоний Po-209 и радий Ra-226. Радий – редкий элемент; чтобы получить 1 грамм чистого радия, надо переработать не менее 5 тонн урановой руды; его радиоактивность в несколько миллионов раз выше радиоактивности урана. Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными. Супруги Кюри, явление самопроизвольного излучения назвали радиоактивностью. 

С этого момента ученый тщательно изучал явление естественной радиоактивности.  За это открытие в 1903 году Анри Беккерель был удостоен Нобелевской премии по физике.

Теоретическая часть (данный материал находится на партах, учащихся)

После открытия радиоактивных элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри, этим занялся Резерфорд.

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка размещалась в вакууме.

В отсутствие магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно точно напротив канала. В магнитном поле пучок распадался на три пучка. В магнитном поле пучок излучения распадался на 3 пучка. Две составляющие первичного потока отклонялись в противоположные стороны.

Как это можно объяснить? Это определенно указывало на наличие у этих составляющих электрических зарядов противоположных знаков, то есть эти составляющие представляют поток положительных и отрицательных частиц

Отрицательная компонента излучения отклонялась магнитным полем гораздо больше, чем положительная.

Как это можно объяснить? Либо разная величина заряда частиц, либо разная скорость движения

Третья составляющая не отклонялась магнитным полем.

Как это можно объяснить? Эта составляющая нейтральна, то есть не является потоком заряженных частиц.

 Положительно заряженная компонента получило название альфа-лучей, отрицательно заряженная – бета-лучи и нейтральная – гамма-лучи

Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный. Третья составляющая совсем не отклонялась магнитным полем. Эти три вида излучения очень сильно различаются по проникающей способности, т. е. по тому, насколько интенсивно они поглощаются различными веществами.

Наименьшей проникающей способностью обладают альфа-лучи. Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего -излучению.

 

Альфа-излучение

Альфа-излучение — это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение

Бета-излучение — это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение

Гамма-излучение — это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей.

Бета-излучение может причинить ожоги кожи в результате облучения.

Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно.

В любом случае без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом. Поэтому общее правило одноизбегать подобных мест, а если уж попали, то укутаться как можно большим количеством одежды и вещей, дышать через ткань, не есть и не пить, и постараться поскорее покинуть место заражения. А потом при первой же возможности избавиться от всех этих вещей и хорошенько вымыться.

Радиоактивность также можно рассматривать как свидетельство сложного строения атома. Гораздо меньше поглощаются при прохождении через вещество бета-лучи. Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают. гамма-лучи.

Интенсивность поглощения гамма-лучей усиливается с увеличением атомного номера вещества-поглотителя. Но и слой свинца толщиной в 1 см не является для них непреодолимой преградой. При прохождении гамма-лучей через такой слой свинца их интенсивность ослабевает лишь вдвое. Физическая природа альфа-, бета- и гамма-лучей, очевидно, различна.

Гамма-лучи. По своим свойствам   J-лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводило на мысль, что J-лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция лучей на кристаллах и измерена их длина волны. Она оказалась очень малой — от 10-8 до 10-11 см.

На шкале электромагнитных волн J- лучи непосредственно следуют за рентгеновскими. Скорость распространения у J-лучей такая же, как у всех электромагнитных волн, — около 300 000 км/с.

Бета-лучи. С самого начала бета- и альфа-лучи рассматривались как потоки заряженных частиц. Проще всего было экспериментировать c бета-лучами, так как они сильнее отклоняются как в магнитном, так и в электрическом поле.

Основная задача экспериментаторов состояла в определении заряда и массы частиц. При исследовании отклонения бета-частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Существенно, что скорости бета -частиц, испущенных каким-либо радиоактивным элементом, неодинаковы. Встречаются частицы с самыми различными скоростями. Это и приводит к расширению пучка бета -частиц в магнитном поле (см. рис. 13.6).

Альфа-частицы. Труднее было выяснить природу альфа-частиц, так как они слабее отклоняются магнитным и электрическим полями. Окончательно эту задачу удалось решить Резерфорду. Он измерил отношение заряда q частицы к ее массе m по отклонению в магнитном поле. Оно оказалось примерно в 2 раза меньше, чем у протона — ядра атома водорода. Заряд протона равен элементарному, а его масса очень близка к атомной единице массы1. Следовательно, у альфа-частицы на один элементарный заряд приходится масса, равная двум атомным единицам массы.

Но заряд альфа-частицы и ее масса оставались, тем не менее, неизвестными. Следовало измерить либо заряд, либо массу альфа-частицы. С появлением счетчика Гейгера стало возможным проще и точнее измерить заряд. Сквозь очень тонкое окошко — частицы могут проникать внутрь счетчика и регистрироваться им.

Резерфорд поместил на пути альфа-частиц счетчик Гейгера, который измерял число частиц, испускавшихся радиоактивным веществом за определенное время. Затем он поставил на место счётчика металлический цилиндр, соединенный с чувствительным электрометром.                       Электрометром Резерфорд измерял заряд альфа — частиц, испущенных источником внутрь цилиндра за такое же время (радиоактивность многих веществ почти не меняется со временем). Зная суммарный заряд альфа-частиц и их число, Резерфорд определил отношение этих величин, т. е. заряд одной альфа-частицы. Этот заряд оказался равным двум элементарным.

Таким образом, он установил, что у альфы -частицы на каждый из двух элементарных зарядов приходится две атомные единицы массы. Следовательно, на два элементарных заряда приходится четыре атомные единицы массы. Такой же заряд и такую же относительную атомную массу имеет ядро гелия. Из этого следует, что альфа- частица — это ядро атома гелия.

Запись в тетрадь

  •                     В природе существуют радиоактивные химические элементы, которые излучают три вида излучения:

Альфа-излучение   – это поток положительно заряженных α-частиц (ядер гелия), летящих со скоростью 14000-2000 км/с.  

Свойства: альфа-излучение слабо отклоняется электрическими и магнитными полями, проявляет сильную ионизирующую способность, но малую проникающую способность. Радиационный риск при внешнем облучении такими альфа-частицами отсутствует. Однако проникновение альфа-активных радионуклидов внутрь тела, когда облучению подвергаются непосредственно ткани организма, весьма опасно для здоровья.

  • Бета-излучение – это поток электронов, летящих со скоростью близкой к скорости света (0,999с)

Свойства: бета-излучение сильно отклоняется электрическими и магнитными полями, проявляет большую проникающую способность, а ионизирующая способность в 2 раза меньше, чем у альфа-излучения

  • Гамма-излучение — электромагнитное излучение с длиной волны менее   10-10 м, имеющее ярко выраженные корпускулярные свойства, то есть являющееся потоком γ-квантов.

Свойства: гамма-излучение не отклоняется электрическими и магнитными полями, ионизирующая способность относительно небольшая, проявляет очень большую проникающую способность: пробег в воздухе –несколько сот метров, в свинце – до 5 см, тело человека пронизывают насквозь.

  • При радиоактивном излучении происходят превращения ядер химических элементов (альфа- и бета-распад).
  • Радиоактивность  самопроизвольное превращение ядер одних химических элементов в ядра других химических элементов, сопровождаемое испусканием различных частиц или ядер.

Радиоактивные превращения ядер бывают различных типов: α-распад, β-распад, эти превращения подчиняются правилу смещения, сформулированному впервые английским ученым Ф. Содди.

Естественная радиоактивность – самопроизвольное превращение ядер некоторых химических элементов в ядра других химических элементов, которое сопровождается выбросом частиц и электромагнитным излучением. Радиоактивные превращения ядер бывают различных типов: α -распад, β -распад. Превращения подчиняются правилу смещения .
 

 

 Радиоактивные превращения

В чём же заключается физическая сущность явления радиоактивности?

Для ответа на этот вопрос необходимо исследовать само радиоактивное вещество.

Что же происходит с радиоактивным веществом?
Уже самые первые опыты, проделанные Резерфордом совместно с английским ученым Ф. Содди, убедили их, что при радиоактивном распаде происходит превращение одних химических элементов в другие.
Цепочки превращений испытали радиоактивные элементы: актиний, торий, уран. Общий вывод, к которому пришли ученые, сформировал Резерфорд:

α – распад: Ядро теряет положительный заряд 2ē и масса его убывает на 4 а.е.м. Элемент смещается на 2 клетки к началу периодической системы.

AZХα → A-4Z-2Y + 42He


β – распад: из ядра вылетает электрон, заряд увеличивается на единицу, а масса остается почти неизменной. Элемент смещается на 1 клетку к концу периодической системы.

AZХβ → AZ+1Y + 0-1Е

Проблемная ситуация. Вопрос к классу: Если вы внимательно следите за моими рассуждениями, то должны мне задать вопрос. (Как же из ядра вылетают электроны, если их там нет?!!!)

 Ответ: приβ – распаде нейтрон превращается в протон с испусканием электрона 
10n → 11p + 0-1e+ υ (υ — антинейтрино)
γ – излучение не сопровождается изменением заряда, масса же ядра меняется ничтожно мало, так как излучаемые  фотоны не имеют заряда и их масса ничтожно мала

Демонстрация видеофайла с компьютерной моделью альфа-распада и бета-распада

IV

. Применение и закрепление знаний. Решение задач. 

Выполнение двух упражнений на применение правила смещения с использованием   компьютерной модели периодической таблицы Менделеева

Самостоятельное решение задач с использованием таблицы Менделеева. Для проверки правильности решения отдельные учащиеся решают задачи у доски.

Задача 1: Изотоп тория 23090Th испускает α-частицу. Какой элемент при этом образуется? 
Решение:23090Th α → 22688Ra + 42He 
Задача 2: Изотоп тория 23090Th испускает β-радиоактивен. Какой элемент при этом образуется?
Решение:23090Th  β → 23091Рa + 0-1e
Задача 3: Протактиний 23191Рa α –радиоактивен. С помощью правил «сдвига» и таблицы элементов Менделеева определите, какой элемент получается с помощью этого распада.
Решение: 23191Рa α → 22789Ас + 42Не
Задача 4: В какой элемент превращения уран 23992U после двух β – распадов и одного α – распада?
Решение:23992U  β → 23993Np β → 23994Pu α → 23592U
Задача 5: Написать цепочку ядерных превращений неона:  β, β, β, α, α, β, α, α
Решение: 2010Ne β → 2011Na β → 2012Mg β → 2013Al α → 1611Na α → 129F β → 1210Neα →88O α → 46C                                                                        

Вид излучений

знак 

 

Природа 

 

свойства 

 

 

Проникающая способность.

 

Альфа 

 

+

Ядра гелия

Отклонение в магнитных и электрических полях

α- частицы не очень опасны в случае внешнего облучения, т.к. могут задерживаться одеждой, резиной. Но α-частицы очень опасны при попадании внутрь человеческого организма, из-за большой плотности, производимой ими ионизации. Повреждения, возникающие в тканях не обратимы.

Бета 

 

Бета-распад бывает трех разновидностей. Первый – ядро, претерпевшее превращение, испускает электрон,

второе – позитрон, третье – называется электронный захват (е-захват), ядро поглощает один из электронов, в результате чего один из протонов превращается в нейтрон, испуская при этом нейтрино:

Отклонение в магнитных и электрических полях

при попадании β-частицы внутрь организма они менее опасны чем α-частицы. Однако проникающая способность β-частиц велика (от 10 см до 25 м и до 17,5 мм в биологических тканях).

Гамма 

 

Нейтраль-

ный

Гамма-излучение – электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях, которое распространяется в вакууме с постоянной скоростью 300 000 км/с

являясь электрически нейтральными, не отклоняются в магнитном и электрическом полях

В веществе и вакууме они распространяются прямолинейно и равномерно во все стороны от источника, не вызывая прямой ионизации, при движении в среде они выбивают электроны, передавая им часть или всю свою энергию, которые производят процесс ионизации. В воздухе они проходят путь от нескольких сот метров и даже километров, в бетоне – 25 см, в свинце – до 5 см, в воде – десятки метров, а живые организмы пронизывают насквозь.

 

V. Рефлексия. Подведение итогов урока.

 

VI. Сообщение домашнего задания. § 23 изучить, упражнение 23(2,5) выполнить,

Таблицу доработать.

 

 

Тема урока: «Радиоактивность. Виды радиоактивных излучений».

конспект урока

по физике

по теме «Радиоактивность. Виды радиоактивных излучений»

Тема урока: «Радиоактивность. Виды радиоактивных излучений».

Тип урока: изучение нового материала

Цели урока: формирование представления о явлении радиоактивности, о физической природе и свойствах α-, β-, γ-излучений; углубление знаний учащихся о структуре атома.

Задачи урока:

— обучающие

познакомить учащихся с историей открытия явления радиоактивности и физической природой этого явления, объяснить правило смещения и научить применять его с помощью периодической системы химических элементов;

-развивающие

расширить представления учащихся о физической картине мира, развитие навыков работы с таблицами, способствовать развитию любознательности, формирование умения анализировать, делать выводы, сравнивать, обобщать факты, применять ранее полученные знания для объяснения наблюдаемых явлений;

-воспитательные

развивать интерес к предмету, расширить кругозор учащихся, воспитывать стремление к овладению знаниями.

Оборудование:

интерактивная доска, компьютер, видеопроектор, презентацияPowerPoint «Радиоактивность. Виды радиоактивных излучений», компьютерная модель таблицы Менделеева (приложение MENDEL.exe),периодическая таблица Менделеева Д.И.(в распечатанном виде на столах у учащихся)

Ход урока.

Организационный момент

Приветствие, проверка присутствующих. Объяснение хода урока.

  1. Мотивация и актуализация знаний

Слова радиоактивности, радиоактивного излучения, радиоактивные элементы знают сегодня все. Все знают об опасности радиоактивных излучений. Но многие, наверное, знают и то, что радиоактивные излучения служат человеку: они позволяют в ряде случаев поставить правильный диагноз болезни, лечат опасные заболевания, повышают урожайность культурных растений. Создаётся проблемная ситуация

Что такое радиоактивность? Какова его физическая природа? В чём заключается его опасность?Сегодня на уроке мы это узнаем (Слайд №2)

Для того чтобы стало понятно, что такое радиоактивность нужно вспомнить некоторые вопросы, которые мы уже изучили ранее на уроках физики.

Что происходит с заряженной частицей, влетевшей в магнитное поле?(на неё действует сила Лоренца, формула силы Лоренца)

Как определить направление силы Лоренца?(по правилу левой руки)(Слайд №3)

Каково строение атомного ядра? (ядра всех химических элементов состоят из нуклонов: протонов и нейтронов)

Чему равно число протонов в ядре? (порядковый номер в таблице Менделеева)

Как условно обозначаются ядра химических элементов?

Z – зарядовое число, которое показывает число протонов в ядре (порядковый номер в таблице Менделеева)

А — массовое число, которое показывает число нуклонов в ядре A = N + Z  , где N – число нейтронов в ядре(Слайд №4)

  1. Изучение нового материала

1) История открытия радиоактивности

Изучая соли урана, французский учёный Анри Беккерель сделал вывод, что соли урана самопроизвольно, без влияния внешних факторов создают какое-то излучение.

26-27 февраля 1896 года Беккерель приготовил несколько образцов кристаллов и прикрепил их к завернутым в бумагу фотопластинкам. Однако в эти дни стояла пасмурная погода, и Беккерель решил отложить опыт. Он считал, что ему необходим яркий солнечный свет. Пластинки были спрятаны в ящик стола и пролежали там около трех дней. Лишь 1 марта, Беккерель решил их проявить, ожидая в лучшем случае, увидеть слабые изображения. Но все оказалось наоборот: изображения были очень четкими. Таким образом, какое-то излучение испускалось солями урана безо всякого освещения светом. (Слайды №5,6)

Беккерель продолжил исследования солей урана, однако он не понимал природы этого излучения. Однажды, демонстрируя своему гостю излучение урановых образцов, он задал ему вопрос в виде просьбы:«Ведь вы физик и химик одновременно. Проверьте, нет ли в этих излучающих телах примесей, которые могли бы играть особенную роль».И этот вопрос стал научной программой исследований молодой четы: Пьера Кюри (1859 – 1906) и его жены Марии Склодовской-Кюри (1867 – 1934). Двумя годами позднее, супруги Пьер и Мария Кюри, доказали, что аналогичным свойством обладает химический элемент торий Th-232 . Затем они же открыли новые, ранее неизвестные элементы – полоний Po-209 и радий Ra-226. Радий – редкий элемент; чтобы получить 1 грамм чистого радия, надо переработать не менее 5 тонн урановой руды; его радиоактивность в несколько миллионов раз выше радиоактивности урана. Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными. Супруги Кюри, явление самопроизвольного излучения назвали радиоактивностью. (Слайд №7)

2) Физическая природа радиоактивности и виды радиоактивных излучений.

По ходу изучения нового материала учащиеся самостоятельно заполняют таблицу(слайд № 8):

Альфа-излучение – это поток положительно заряженных α-частиц (ядер гелия), летящих со скоростью 14000-2000 км/с (Слайд № 16)

Бета-излучение – это поток электронов, летящих со скоростью близкой к скорости света (0,999с) (Слайд № 17)

Гамма-излучение электромагнитное излучение с длиной волны менее 10-10 м, имеющее ярко выраженные корпускулярные свойства, то есть являющееся потоком γ-квантов(Слайд № 18)

Проверка заполнения таблицы свойств радиоактивных излучений(Слайд №19)

3) Радиоактивные превращения

В чём же заключается физическая сущность явления радиоактивности?

Для ответа на этот вопрос необходимо исследовать само радиоактивное вещество.

Что же происходит с радиоактивным веществом?
Уже самые первые опыты, проделанные Резерфордом совместно с английским ученым Ф. Содди, убедили их, что при радиоактивном распаде происходит превращение одних химических элементов в другие.
Цепочки превращений испытали радиоактивные элементы: актиний, торий, уран. Общий вывод, к которому пришли ученые, сформировал Резерфорд:

радиоактивность —самопроизвольное превращение ядер одних химических элементов в ядра других химических элементов, сопровождаемое испусканием различных частиц или ядер.
Радиоактивные превращения ядер бывают различных типов: α-распад, β-распад, эти превращения подчиняются правилу смещения, сформулированному впервые английским ученым Ф. Содди.(Слайд № 20 )
α – распад: Ядро теряет положительный заряд 2ē и масса его убывает на 4 а.е.м. Элемент смещается на 2 клетки к началу периодической системы.

AZХαA-4Z-2Y + 42He(Слайд № 21 )


β – распад: из ядра вылетает электрон, заряд увеличивается на  единицу, а масса остается почти неизменной. Элемент смещается на 1 клетку к концу периодической системы.

AZХβAZ+1Y + 0-1e

Проблемная ситуация. Вопрос к классу:Если вы внимательно следите за моими рассуждениями, то должны мне задать вопрос. (Как же из ядра вылетают электроны, если их там нет?!!!)

Ответ: приβ – распаде нейтрон превращается в протон с испусканием электрона
10n → 11p + 0-1e+ υ (υ — антинейтрино)(Слайд № 22)

γ – излучение не сопровождается изменением заряда, масса же ядра меняется ничтожно мало, так как излучаемые фотоны не имеют заряда и их масса ничтожно мала(Слайд № 23 )

Демонстрация видеофайла с компьютерной модельюальфа-распада и бета-распада(видеофайл запускается кнопкой “Play” в окне видеофайла) (Слайд № 24)

IV. Закрепление изученного.

Выполнение двух упражнений на применение правила смещения с использованием компьютерной модели периодической таблицыМенделеева(файлMENDEL.exe)(Слайд № 25)

Самостоятельное решение задач с использованием таблицы Менделеева(Слайд № 26).Для проверки правильности решения отдельные учащиеся решают задачи у доски.

Задача 1: Изотоп тория 23090Th испускает α-частицу. Какой элемент при этом образуется?
Решение:23090Th α22698Ra + 42He
Задача 2: Изотоп тория 23090Th испускает β-радиоактивен. Какой элемент при этом образуется?
Решение:23090Th  β → 23091Рa + 0-1e
Задача 3: Протактиний 23191Рa α –радиоактивен. С помощью правил «сдвига» и таблицы элементов Менделеева определите, какой элемент получается с помощью этого распада.
Решение: 23191Рa α22789Ас + 42Не
Задача 4: В какой элемент превращения уран 23992U после двух β – распадов и одного α – распада?
Решение:23992U  β → 23993Np β → 23994Pu α23592U
Задача 5: Написать цепочку ядерных превращений неона:  β, β, β, α, α, β, α, α
Решение: 2010Ne β → 2011Na β → 2012Mg β → 2013Al α1611Na α129F β → 1210Ne α88O α46C

  1. Домашнее задание:п.98-100, упр.14(1) (Слайд № 27).

  1. Подведение итогов урока(Слайд № 28).

Итоги:

  • Альфа-излучение – это поток положительно заряженных α-частиц (ядер гелия ), летящих со скоростью 14000-2000 км/с

  • Бета-излучение – это поток электронов, летящих со скоростью близкой к скорости света (0,999с)

  • Гамма-излучение — электромагнитное излучение с длиной волны менее 10-10 м, имеющее ярко выраженные корпускулярные свойства, то есть являющееся потоком γ-квантов.

  • Радиоактивность — самопроизвольное превращение ядер одних химических элементов в ядра других химических элементов, сопровождаемое испусканием различных частиц или ядер.

Ответы на вопросы учащихся.

Выставление оценок.

ИСПОЛЬЗОВАВШАЯСЯ ЛИТЕРАТУРА И ИНТЕРНЕТ-РЕСУРСЫ

  1. Физика. 11 класс. Учебник для общеобразовательных учреждений с приложением на электронном носителе. Базовый и профильный уровни. (Классический курс) Автор: Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. / Под ред. Николаева В. И., Парфентьевой, г. Москва,Издательство: «Просвещение», 2012

  2. Сборник задач по физике для средней школы Автор: Рымкевич А.П., Рымкевич П.А. г. Москва,Издательство «Просвещение», 1984

  3. Сайт «Класс!ная физика» /class-fizika.narod.ru/ входит в каталог «Образовательные ресурсы сети-интернет для основного общего и среднего (полного) общего образования», одобрено Министеством образования и науки РФ, Москва, выпуск с 2006г.

  4. Сайт«Единая коллекция цифровых образовательных ресурсов» http://files.school-collection.edu.ru/

Естественная радиоактивность. Атомная физика :: Класс!ная физика

ЕСТЕСТВЕННАЯ РАДИОАКТИВНОСТЬ

Естественной радиоактивностью называется самопроизвольное превращение атомных ядер одного химического элемента в ядра атомов другого химического элемента, сопровождаемое радиоактивным излучением.
Открытие явления — 1896 г. французский ученый Анри Беккерель при постановке опытов с солями урана.
Без каких-либо внешних влияний на уран А. Беккерелем было зарегистрировано неизвестное излучение.
В 1898 г. М. Склодовская — Кюри обнаружила излучение тория. а также открыла новые радиоактивные химические элементы полоний и радий.

Все химические элементы с порядковым номером более 83 являются радиоактивными.
Естественная радиоактивность химических элементов не зависит от внешних условий.

Три вида радиоактивного излучения

В 1899 г. Э. Резерфорд обнаружил, что радиоактивное излучение состоит из двух компонентов, которые он назвал «альфа-лучи» и «бета-лучи».
В 1900г. французский физик Ф. Вилард установил, что в состав излучения входят еще и гамма-лучи.

Опыт Резерфорда

Поведение радиоактивного излучения было изучено в магнитном поле. Радиоактивный элемент был помещен в узкий свинцовый стакан, напротив которого размещалась фотопластинка. Вся установка размещалась в вакууме.
В отсутствие магнитного поля на фотопластинке было обнаружено в центре одно пятно засветки от излучения.
В магнитном поле пучок излучения распался на три. Составляющие отклонялись в противоположные стороны: пятно на фотопластинке по середине оставляла составляющая, не имеющая заряда, две другие составляющие радиоактивного излучения отклонялись в противоположные стороны, что доказывало присутствие заряженных частиц в излучении.
В результате опыта Э.Резерфорд доказал, что радиоактивное излучение является неоднородным.

Свойства радиоактивных лучей

Альфа-излучение (альфа лучи) — это поток полностью ионизированных ядер атомов гелия.

Бета-излучение (бета-лучи) — это поток электронов.

Гамма-излучение (гамма-лучи) — это электромагнитное излучение.

Электромагнитные кванты гамма-излучения не имеют массы покоя и электрического заряда, поэтому при прохождении через вещество они очень слабо взаимодействуют с ядрами и электронами. Их энергия почти не меняется, поэтому гамма-излучение обладает большой проникающей способностью. Защитой от гамма-излучения является толстый слой свинца.

Вспомни тему «Атомная физика» за 9 класс:

Радиоактивность.
Радиоактивные превращения.
Состав атомного ядра. Ядерные силы.
Энергия связи. Дефект масс.
Деление ядер урана.
Ядерная цепная реакция.
Ядерный реактор.
Термоядерная реакция.

Другие страницы по теме «Атомная физика» за 10-11 класс:

Строение атома
Квантовые постулаты Бора
Методы регистрации частиц
Естественная радиоактивность
Радиоактивный распад
Закон радиоактаивного распада
Ядерные силы
Открытие электрона
Открытие протона
Открытие нейтрона
Строение ядра атома
Изотопы
Энергия связи ядра
Ядерные реакции
Деление ядер урана. Цепная реакция
Ядерный реактор. Атомная бомба
Термоядерная реакция
Водородная бомба
Топливные ресурсы. Ядерная энергетика

ИЗ ИСТОРИИ ОТКРЫТИЯ

Именно плохая погода стала причиной открытия естественной радиоактивности, т.к. из-за пасмурной погоды в течение нескольких дней Анри Беккерель не мог изучать флюоресценцию солей металлов.
___

В 1911 году на Южном Урале работала специальная экспедиция Академии наук, одним из результатов работы которой стала находка 15 килограммов самарскита. Это радиоактивный минерал. Экспедиция носила специальный «радиевый» характер и найденный радиоактивный минерал предназначался для Марии Склодовской-Кюри.


«открытие Радиоактивности. Альфа-, бета- и гамма-излучения

Урок № 50 Тема урока: Радиоактивность как свидетельство сложного строения атомов Подготовил: учитель физики Д.А. Мелентьев КУРСК 2013

Слайд 2

Слайд 3

Сегодня мы узнаем: 1. Радиоактивность как свидетельство сложного строения атомов. 2. Открытие явления радиоактивности. 3. Опыт по обнаружению сложного состава радиоактивного излучения. 4. 5.

Слайд 4

Демокрит Древнегреческий философ, основоположник атомистического учения. По Демокриту, существуют только атомы и пустота. Атомы – неделимые материальные элементы, вечные, неразрушимые, непроницаемые, различаются формой, положением в пустоте, величиной; движутся в различных направлениях, из их «вихря» образуются как отдельные тела, так и все бесчисленные миры; невидимы для человека; истечения из них, действуя на органы чувств, вызывают ощущения.

Слайд 5

Антуан Анри Беккерель В 1896 г. Беккерель случайно открыл радиоактивность во время работ по исследованию фосфоресценции в солях урана. Французский физик, лауреат Нобелевской премии по физике и один из первооткрывателей радиоактивности. Антуан Анри Беккерель родился 15 декабря 1852 года в семье потомственных ученых. Его отец Александр Эдмонд Беккерель был профессором физики и руководителем Национального музея естественной истории. Как и дед Анри, он работал в области фосфоресценции и одновременно занимался вопросами фотографии.

Слайд 6

Фосфоресценция Фосфоресценция – это процесс, в котором энергия, поглощенная веществом, высвобождается относительно медленно в виде света. Фосфоресцентныйпорошок при облучении видимым светом, ультрафиолетовым светом и в полной темноте.

Слайд 7

Слайд 8

Радиоактивность Радиоактивность – способность атомов некоторых химических элементов к самопроизвольному излучению

Слайд 9

Мария Склодовская-Кюри Польско-французский учёный-экспериментатор (физик, химик), педагог, общественный деятель. Дважды лауреат Нобелевской премии: по физике (1903) и по химии (1911), первый дважды нобелевский лауреат в истории.

Слайд 10

«Тогда я занялась изысканиями, не существует ли других элементов, обладающих тем же свойством, и с этой целью изучила все известные в то время элементы, как в чистом виде, так и в соединениях. Я нашла, что среди этих лучей только соединения тория испускают лучи, подобные лучам урана».

Слайд 11

«Тогда я выдвинула гипотезу, — писала Мария Склодовская-Кюри, — что минералы с ураном и торием содержат небольшое количество вещества, гораздо более радиоактивного, чем уран и торий; это вещество не могло принадлежать к известным элементам, потому все они уже были исследованы; это должен был быть новый химический элемент».

Слайд 12

18 июля 1898 года Пьер и Мария Кюри на заседании Парижской Академии наук выступили с сообщением «Оновом радиоактивном веществе, содержащемся в смоляной обманке». «Вещество, которое мы извлекли из смоляной обманки, содержит металл, еще не описанный и являющийся соседом висмута по своим аналитическим свойствам. Если существование нового металла подтвердится, мы предлагаем назвать его полонием, по имени родины одного из нас».

Слайд 13

26 декабря 1898 года появляется следующая статья супругов Кюри: «Об одном новом, сильно радиоактивном веществе, содержащемся в смоляной руде».

Слайд 14

Радиоактивные элементы Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными.

Слайд 15

Эрнест Резерфорд Британский физик новозеландского происхождения. Известен как «отец» ядерной физики, создал планетарную модель атома. Лауреат Нобелевской премии по химии 1908 года. В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Слайд 16

Опыт по обнаружению сложного состава радиоактивного излучения.

Слайд 17

Альфа, бета, и гамма – частицы.

Слайд 18

Альфа, бета, и гамма – частицы.

Слайд 19

Альфа, бета, и гамма – частицы.

Слайд 20

Альфа, бета, и гамма – частицы.

Слайд 21

Проникающая способность радиоактивного излучения.

Слайд 22

Проникающая способность радиоактивного излучения.

Слайд 23

Проникающая способность радиоактивного излучения.

Слайд 24

Проникающая способность радиоактивного излучения.

Слайд 25

Слайд 26

Проникающая способность радиоактивного излучения.

Слайд 27

Проникающая способность радиоактивного излучения.

Слайд 28

Проникающая способность радиоактивного излучения.

Слайд 29

Проникающая способность радиоактивного излучения.

Слайд 30

Слайд 31

До завершения тестирования осталось 5 минут

Слайд 32

До завершения тестирования осталось 4 минуты

Слайд 33

До завершения тестирования осталось 3 минуты

Слайд 34

До завершения тестирования осталось 2 минуты

Слайд 35

До завершения тестирования осталось 1 минута

Слайд 36

ТЕСТИРОВАНИЕ ЗАВЕРШЕНО

Слайд 37

Слайд 38

ПРОВЕРИМ ТЕСТ 1. Переведите с древнегреческого слово «атом». 2. Кто из учёных впервые открыл явление радиоактивности? Маленький Простой Неделимый Твёрдый Д. Томсон Э. Резерфорд А. Беккерель А. Эйнштейн

Слайд 39

ПРОВЕРИМ ТЕСТ 1. Переведите с древнегреческого слово «атом». 2. Кто из учёных впервые открыл явление радиоактивности? Маленький Простой Неделимый Твёрдый Д. Томсон Э. Резерфорд А. Беккерель А. Эйнштейн

Слайд 40

Слайд 41

ПРОВЕРИМ ТЕСТ 3. - излучение – это 4.  — излучение – это Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 42

ПРОВЕРИМ ТЕСТ 3. - излучение – это 4.  — излучение – это Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 43

Слайд 44

ПРОВЕРИМ ТЕСТ 5. - излучение – это 6. Что представляет собой  — излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 45

ПРОВЕРИМ ТЕСТ 5. - излучение – это 6. Что представляет собой  — излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток положительных частиц Поток отрицательных частиц Поток нейтральных частиц

Слайд 46

Слайд 47

ПРОВЕРИМ ТЕСТ 7. Что представляет собой - излучение? 6. Что представляет собой - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты

Слайд 48

ПРОВЕРИМ ТЕСТ 7. Что представляет собой - излучение? 6. Что представляет собой - излучение? Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты Поток ядер гелия Поток протонов Поток электронов Электромагнитные волны большой частоты

Слайд 49

Критерии оценивания

Слайд 50

Вопросы 1. В чем заключается открытие, сделанное Беккерелем в 1896г? 2. Кто из ученых занимался исследованием данных лучей? 3. Как и кем было названо явление самопроизвольного излучения некоторыми атомами? 4. В ходе исследования явления радиоактивности, какие неизвестные ранее химические элементы были открыты? 5. Что доказывает опыт Резерфорда? 6. Как были названы частицы, входящие в состав радиоактивного излучения? 7. О чем свидетельствует явление радиоактивности?

Слайд 51

Домашнее задание § 55 (старый учебник), §65 (новый учебник) Ответьте на вопросы после параграфа. Вопрос??? Почему опыт Резерфорда доказывает сложное строение атома?

Посмотреть все слайды

Тема: Радиоактивность, альфа-, бета-, гамма излучения, правило смещения, период полураспада, закон радиоактивного распада. Цель: Познакомить учеников с исторической хронологией открытия явления естественной радиоактивности и свойствами радиоактивного излучения. Раскрыть природу радиоактивного распада и его закономерности. Развивать умение анализировать научный материал, исследование, используя дополнительную литературу. Воспитывать личную ответственность за то, что происходит вокруг, чуткость и человечность. Задачи урока Образовательные задачи: объяснить и закрепить новый материал, познакомить с историей открытия, показать презентацию по теме урока Развивающие задачи: активизировать мыслительную деятельность учащихся на уроке; реализовать успешное овладение новым материалом, развивать речь, умение делать выводы. Воспитательные задачи: заинтересовать и увлечь темой урока; создать личную ситуацию успеха; вести коллективный поиск по сбору материалов о радиации, создать условия для развития у школьников умения структурировать информацию. Оборудование и материалы:Знак радиоактивной опасности; портреты ученых, раздаточный материал, справочники, проектор, рефераты учащихся, презентация. Тип урока: урок изучения нового материала. Понятия и определения: радиоактивность, α-, β- частицы, γ- излучение, период полраспада, радиоактивный ряд, радиоактивное превращение, закона радиоактивного распада. «Лишь поняв природу, человек поймет сам себя» Р.Едберг (шведский писатель) Ход урока I. Организационный момент. Приветствие учеников. II. Мотивация учебной деятельности учеников. Объявление темы урока, заданий и ожидаемых результатов. Человек тысячи лет боролся за свое существование, выжил в эпидемиях, голодоморах, в пятнадцати тысячах войн, которые же сама и развязала. Выжила и всегда верила в лучшую жизнь. Ради этого человек развивал науку, культуру, медицину, новые социальные системы. И вот через свои ошибочные моральные принципы, духовное обнищание, деградацию экологического сознания и совести, мы опять очутились на пороге нового, чуть ли не более ужасного этапа выживания. Радиация — это необычные лучи, которые глазом не видно и вообще нельзя никак почувствовать, но которые могут проникать даже через стены и пронизывать человека. III. Этап подготовки к изучению новой темы Актуализация наличных знаний учащихся в форме проверки домашнего задания и беглого фронтального опроса учащихся. 1. Что означает слово «атом»? 2. Кто ввел это понятие в физику? 2 3. Из чего состоит атом? 3 4. Какое строение атомного ядра? Что такое нуклон? 4 5. Что такое электрон? Какой его заряд? 6. Чем ядерные силы отличаются от электрических и гравитационных? 7. Модель атома Томсона. 8. Планетарная модель атома. 9. В чем суть опыта резерфорда? IV. Создание проблемной ситуации. Показать знак радиоактивной опасности. Ответить вопрос: » Что означает этот знак? В чем опасность радиоактивного излучения?» «Ничего не надо бояться — надо лишь понять неизвестное» Мария Склодовская- Кюри. V. Этап усвоения знаний. 1) Сообщения учащегося. Открытие радиоактивности Анри Беккерелем. Открытие радиоактивности произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. Он завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления фотопластинка почернела на тех участках, где лежала соль. Беккерель думал, что излучение урана возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких либо внешних влияний создают какое-то излучение. Начались интенсивные исследования. Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану. Затем подобное качество было обнаружено и у тория. Слайд №1 Беккерель Антуан Анри французский физик. Окончил политехническую школу в Париже. Основные работы посвящены радиоактивности и оптике. В 1896г открыл явление радиоактивности. В 1901г обнаружил физиологическое действие радиоактивного излучения. В 1903г Беккерель удостоен Нобелевской премии за открытие естественной радиоактивности урана. (1903, совместно с П. Кюри и М. Склодовской-Кюри). 2) Сообщения учащегося. Открытие радия и полония. В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий. Так были открыты два неизвестных ранее радиоактивных элемента — полоний и радий, Это был изнурительный труд, в течение долгих четырех лет супруги почти не выходили из своего сырого и холодного сарая. Полоний (Po-84) был назван в честь родины Марии — Польши. Радий (Ra-88)- лучистый, термин радиоактивность предложен был Марией Склодовской. Радиоактивными являются все элементы с порядковыми номерами более 83, т.е. расположенными в таблице Менделеева после висмута. За 10 лет совместной работы они сделали очень многое для изучения явления радиоактивности. Это был беззаветный труд во имя науки — в плохо оборудованной лаборатории и при отсутствии необходимых средств Препарат радия исследователи получили в 1902 году в количестве 0,1 гр. Для этого им потребовалось 45 месяцев напряженного туда и более 10000 химических операций освобождения и кристаллизации. Недаром Маяковский сравнивал поэзию с добычей радия: «Поэзия — та же добыча радия. В грамм добыча, в год труды. Изводишь единого слова ради тысячи тонн словесной руды.» В 1903 году за открытие в области радиоактивности супругам Кюри и А.Беккерелю была присуждена Нобелевская премия по физике. Явление самопроизвольного превращения неустойчивых ядер атомов в ядра других атомов с испусканием частиц и излучением энергии называется естественной радиоактивностью. Слайд №2 Мария Склодовская-Кюри — польский и французский физик и химик, один из основоположников учения о радиоактивности родилась 7 ноября 1867 в Варшаве. Она первая женщина — профессор Парижского университета. За исследования явления радиоактивности в 1903 г., совместно с А. Беккерелем получила Нобелевскую премию по физике, а в 1911 г. за получение радия в металлическом состоянии — Нобелевскую премию по химии. Умерла от лейкемии 4 июля 1934 г. Слайд №3 — Пьер Кюри — французский физик, один из создателей учения о радиоактивности. Открыл (1880) и исследовал пьезоэлектричество. Исследования по симметрии кристаллов (принцип Кюри), магнетизму (закон Кюри, точка Кюри). Совместно с женой М. Склодовской-Кюри открыл (1898) полоний и радий, исследовал радиоактивное излучение. Ввел термин «радиоактивность». Нобелевская премия (1903, совместно со Склодовской-Кюри и А. А. Беккерелем). Слайд №4 3) Сообщения учащегося Сложный состав Радиоактивного излучения.В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения. В результате опыта, проведенного под руководством английского физика, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Слайд № 5. Резерфорд Эрнст (1871-1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член-корреспондент РАН (1922) и почетный член АН СССР (1925). Директор Кавендишской лаборатории (с 1919). Открыл (1899) альфа- и бета-лучи и установил их природу. Создал (1903, совместно с Ф. Содди) теорию радиоактивности. Предложил (1911) планетарную модель атома. Осуществил (1919) первую искусственную ядерную реакцию. Предсказал (1921) существование нейтрона. Нобелевская премия (1908). Слайд № 6 Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения. Препарат радия помещали в свинцовый контейнер с отверстием. Напротив отверстия помещали фотопластинку. На излучение действовало сильное магнитное поле. Почти 90 % известных ядер нестабильны. Радиоактивные ядра могут испускать частицы трех видов: положительно заряженные (α-частицы — ядра гелия), отрицательно заряженные (β-частицы — электроны) и нейтральные (γ-частицы — кванты коротковолнового электромагнитного излучения). Магнитное поле позволяет разделить эти частицы. 4) Проникающая способность α .β. γ излучения Слайд № 7 α -лучи обладают наименьшей проникающей способностью. Слой бумаги толщиной 0.1мм для них уже непрозрачен. . β-лучи полностью задерживает алюминиевая пластинка толщиной несколько мм. . γ-лучи при прохождении через слой свинца в 1см уменьшают интенсивность в 2 раза. 5) Физическая природа α .β. γ излучения Слайд № 8 γ-излучение электромагнитные волны 10-10-10-13м β-лучи-поток электронов, движущихся со скоростями близкими к скорости света. α -лучи- ядра атома гелия (краткое описание исследований Резерфорда) Резерфорд измерил отношение заряда частицы к массе по отклонению в магнитном поле. Электрометром измерил заряд.. испущенный частицами источника, счетчиком Гейгера измерил их число. Резерфорд установил. что на каждый из двух элементарных зарядов приходится две атомные единицы массы. То есть α-частица — это ядро атома гелия. 6) Правило смещения. Слайд № 9 Альфа-распад. При альфа-распаде ядро испускает одну α-частицу, и из одного химического элемента образуется другой, расположенный на две клетки левее в периодической системе Менделеева: Слайд № 10 Вета-распад.При бета-распаде испускается один электрон, и из одного химического элемента образуется другой, расположенный на клетку правее: При бета-распаде из ядра вылетает еще одна частица, называемая электронным антинейтрино. Эта частица обозначается символом * При испускании ядрами атомов нейтральных γ-квантов ядерных превращений не происходит. Испущенный γ-квант уносит избыточную энергию возбужденного ядра; числа протонов и нейтронов в нем остаются неизменными. Настоящая модель демонстрирует различные типы ядерных превращений. Ядерные превращения возникают как вследствие процессов радиоактивного распада ядер, так и вследствие ядерных реакций, сопровождающихся делением или синтезом ядер. Закончить запись распада 1. 2. 3. 4. 7) Закон радиоактивного распада. Слайд. № 11 Время, за которое распадается половина из начального числа радиоактивных атомов, называют периодом полураспада. За это время активность радиоактивного вещества уменьшается вдвое. Период полураспада — основная величина. определяющая скорость радиоактивного распада. Чем меньше период полураспада. тем меньше времени живут атомы, тем быстрее происходит распад. Для разных веществ период полураспада имеет разные значения. Слайд. № 12 Закон радиоактивного распада установлен Ф. Содди. По формуле находят число нераспавшихся атомов в любой момент времени. Пусть в начальный момент времени число радиоактивных атомов N0. По истечении периода полураспада их будет N0./2. Спустя t=nT их останется N0/2п VI. Этап закрепления новых знаний. Задача 1. Количество радиоактивного радона уменьшилось в 8 раз за 11,4 суток. Определите период полураспада радона? Дано: t=11.4 сут Т-? ; Ответ: Т= 3,8 сут. Задача2. Период полураспада (радон) равен 3,8 суток. Через какое время масса радона уменьшится в 4 раза? Дано: Т=3,8 сут;t-?T=2Т=7,6 сут Тест. «Радиоактивность» (Получает каждый ученик). 1 вариант 1. Кто из перечисленных ученых назвал явление самопроизвольного излучения радиоактивностью? А. Супруги Кюри В. Резерфорд С. Беккерель 2. -лучи представляют собой…. А. поток электронов В. поток ядер гелия С. электромагнитные волны 3. В результате — распада элемент смещается: А. на одну клетку к концу периодической системы В. на две клетки к началу периодической системы С. на одну клетку к началу периодической системы 4. Время, в течение которого распадается половина радиоактивных атомов, называется… А.временем распада В. периодом полураспада С. периодом распада 5. Имеется 109атомов радиоактивного изотопа йода 53128I, период его полураспада25мин. Какое примерно количество ядер изотопа останется нераспавшимся через 50 мин? А. 5108 В. 109 С. 2,5108 2 вариант 1. Кто из перечисленных ниже ученых является первооткрывателем радиоактивности? А. Супруги Кюри В. Резерфорд С. Беккерель 2. — лучи представляют собой… А. поток электронов В. поток ядер гелия С. электромагнитные волны 3. В результате — распада элемент смещается А. на одну клетку к концу периодической системы В. на две клетки к началу периодической системы С. на одну клетку к началу периодической системы 4. Какое из перечисленных ниже выражений соответствует закону радиоактивного распада. А.N=N02-t/T В. N=N0/2 С. N=N02-T 5. Имеется 109атомов радиоактивного изотопа цезия 55137Cs, период его полураспада 26 лет. Какое примерно количество ядер изотопа останется не распавшимся через 52 года? А. 5108 В. 109 С. 2,5108 Ответы 1 вариант 2 вариант 1А, 2А, 3В, 4С, 5С 1С, 2С, 3А, 4А, 5С VII. Этап подведения итогов, информация о домашнем задании. VIII. Рефлексия. Рефлексия деятельности на уроке Закончить фразу 1. сегодня я узнал… 2. мне было интересно… 3. я понял, что… 4. теперь я могу… 5. я научился… 6. у меня получилось… 7. меня удивило… 8. урок дал мне для жизни… 9. мне захотелось… Домашнее задание §§ 100,101.102, №1192,№1201 Дополнительная необходимая информация В помощь учителю 1. Использованные источники и литература (если имеются)Мякишев Г.Я., Буховцев Б.Б. Физика -11:. — М.:: Просвещение, 2005 2. Корякин Ю. И Биография атома. Москва 1961 3. Энциклопедический словарь юного физика / сост. В.А.Чуянов..: Педагогика, 1984 4. Касьянов В.А. Физика 11 класс. — М.: Дрофа, 2006. 5. Рымкевич А.П. Сборник задач по физике. — М.: Просвещение, 2002. 6. Марон А.Е., Марон Е.А. Физика 11 класс: Дидактические материалы — М.: Дрофа, 2004. Раздаточный материал Тест. «Радиоактивность» 1 вариант 1. Кто из перечисленных ученых назвал явление самопроизвольного излучения радиоактивностью? А. Супруги Кюри В. Резерфорд С. Беккерель 2. -лучи представляют собой…. А. поток электронов В. поток ядер гелия С. электромагнитные волны 3. В результате — распада элемент смещается: А. на одну клетку к концу периодической системы В. на две клетки к началу периодической системы С. на одну клетку к началу периодической системы 4. Время, в течение которого распадается половина радиоактивных атомов, называется… А.временем распада В. периодом полураспада С. периодом распада 5. Имеется 109атомов радиоактивного изотопа йода 53128I, период его полураспада25мин. Какое примерно количество ядер изотопа останется не распавшимся через 50 мин? А. 5108 В. 109 С. 2,5108 Тест. «Радиоактивность» 2 вариант 1. Кто из перечисленных ниже ученых является первооткрывателем радиоактивности? А. Супруги Кюри В. Резерфорд С. Беккерель 2. — лучи представляют собой… А. поток электронов В. поток ядер гелия С. электромагнитные волны 3. В результате — распада элемент смещается А. на одну клетку к концу периодической системы В. на две клетки к началу периодической системы С. на одну клетку к началу периодической системы 4. Какое из перечисленных ниже выражений соответствует закону радиоактивного распада. А.N=N02-t/T В. N=N0/2 С. N=N02-T 5. Имеется 109атомов радиоактивного изотопа цезия 55137Cs, период его полураспада 26 лет. Какое примерно количество ядер изотопа останется нераспавшимся через 52 года? А. 5108 В. 109 С. 2,5108 Рефлексия деятельности на уроке Закончить фразу 1. сегодня я узнал… 2. мне было интересно… 3. я понял, что… 4. теперь я могу… 5. я научился… 6. у меня получилось… 7. меня удивило… 8. урок дал мне для жизни… 9. мне захотелось…

Урок физики в 9-м классе по теме

«Радиоактивность как свидетельство сложного

строения атомов»

Тип урока – урок изучения нового материала

Форма изучения нового материала – лекция учителя с активным привлечением обучающихся.

Методы урока – словесные, наглядные, практические

Цели урока:

    (дидактические или образовательные) обеспечить в ходе урока усвоение понятий “радиоактивность”, альфа-, бета-, гамма излучений. В ходе подготовки к итоговой аттестации повторить понятия: электрический ток, сила тока, напряжение, сопротивление, закон Ома для участка цепи. Продолжать совершенствовать навыки сборки электрических цепей. Продолжить формирование общеучебных умений: планирования рассказа, работы с дополнительной литературой

    (воспитательные задачи ставятся на год) продолжать формировать у обучающихся научное мировоззрение.

    (развивающие задачи ставятся на год) развивать навыки культуры речи, в целях развития познавательного интереса обучающихся к предмету на уроке планируются интересные исторические справки.

Демонстрация. Портреты ученых: Демокрита, А. Беккереля, Э. Резерфорда, М. Склодовской – Кюри, П. Кюри.

Таблица “Опыт по изучению радиоактивности”

Ход урока

I. Организационный момент . (приветствие, проверка готовности обучающихся к уроку)

II. Вступительное слово учителя. (1 – 3 минуты)

Сегодня на уроке продолжаем повторять ранее изученный материал, и готовимся к итоговой аттестации. Сегодня мы повторяем такие понятия, как

    Электрический ток.

    Сила электрического тока.

    Электрическое напряжение.

    Электрическое сопротивление.

    Закон Ома для участка цепи.

и совершенствуем навыки сборки простейших электрических цепей.

III. Повторение, подготовка к итоговой аттестации . (8-10 минут)

Учитель дает индивидуальные задания для слабых учащихся в виде карточек и для выполнения задания им разрешается пользоваться учебниками

Обучающиеся, которые выбрали физику на итоговую аттестацию, получают практические задания по сборке электрических цепей.

Решение экспериментальной задачи. Собрать электрическую цепь из источника тока, резистора, ключа, амперметра, вольтметра. По показаниям приборов определить сопротивление резистора.

Остальные обучающиеся участвуют во фронтальном опросе

    Что такое электрический ток?

    Какие заряженные частицы вы знаете?

    Что нужно создать в проводнике, чтобы в нем возник и существовал электрический ток?

    Перечислите источники электрического тока.

    Перечислите действия электрического тока.

    Какой величиной определяется сила тока в электрической цепи?

    Как называется единица силы тока?

    Как называется прибор для измерения силы тока, и как включают его в цепь?

    Что характеризует напряжение, и что принимают за единицу напряжения?

    Как называется прибор для измерения напряжения, какое напряжение используют в городской осветительной цепи?

    Что является причиной электрического сопротивления, и что принимают за единицу сопротивления проводника?

    Сформулируйте закон Ома для участка цепи и запишите его формулу.

Поставить оценки обучающимся за повторение изученного материала.

IV. Записать домашнее задание: параграф 55, ответить на вопросы стр. 182 Повторить 8 кл. гл 4 “Электромагнитные явления”

V. Изучение нового материала.

Сегодня мы начинаем изучать четвертую главу нашего учебника, она называется “Строение атома и атомного ядра. Использование энергии атомных ядер”.

Тема нашего урока “Радиоактивность как свидетельство сложного строения атомов” (запись в тетради даты и темы урока).

Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческим философом Демокритом еще 2500 лет назад. Частицы были названы атомами, что означает неделимые. Таким названием Демокрит хотел подчеркнуть, что атом – это мельчайшая, простейшая, не имеющая составных частей и поэтому неделимая частица.

Информационная справка (сообщения делают обучающиеся).

Демокрит – годы жизни 460-370 до н.э. Древнегреческий ученый, философ – материалист, главный представитель древней атомистики. Считал, что во Вселенной существует бесконечное множество миров, которые возникают, развиваются и гибнут.

Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру, и что в их состав входят электрически заряженные частицы.

Наиболее ярким свидетельством сложного строения атомов явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896г.

Информационная справка

Беккерель Антуан Анри французский физик родился 15 декабря 1852 г. Окончил политехническую школу в Париже. Основные работы посвящены радиоактивности и оптике. В 1896г открыл явление радиоактивности. В 1901г обнаружил физиологическое действие радиоактивного излучения. В 1903г Беккерель удостоен Нобелевской премии за открытие естественной радиоактивности урана. Умер 25 августа 1908 г.

Открытие радиоактивности произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. К таким веществам принадлежат соли урана, с которыми экспериментировал Беккерель. И вот у него возник вопрос: не появляются ли после облучения солей урана наряду с видимым светом и рентгеновские лучи? Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления фотопластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое – то излучение, которое пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких либо внешних влияний создают какое-то излучение. Начались интенсивные исследования. Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану, его атомам.

Естественно ученые попытались обнаружить, не обладают ли способностью к самопроизвольному излучению другие химические элементы. В эту работу внесла большой вклад Мария Склодовская-Кюри.

Информационная справка

Мария Склодовская-Кюри – польский и французский физик и химик, один из основоположников учения о радиоактивности родилась 7 ноября 1867 в Варшаве. Она первая женщина – профессор Парижского университета. За исследования явления радиоактивности в 1903 г., совместно с А. Беккерелем получила Нобелевскую премию по физике, а в 1911 г. за получение радия в металлическом состоянии – Нобелевскую премию по химии. Умерла от лейкемии 4 июля 1934 г.

В 1898г М. Склодовская-Кюри и др. ученые обнаружили излучение тория. В дальнейшем главные усилия в поисках новых элементов были предприняты М. Склодовской-Кюри и ее мужем П. Кюри. Систематическое исследование руд, содержащих уран и торий, позволило им выделить новый неизвестный ранее химический элемент – полоний № 84, названный так в честь родины М. Склодовской-Кюри – Польши. Был открыт еще один элемент, дающий интенсивное излучение – радий № 88, т.е. лучистый. Само же явление произвольного излучения было названо супругами Кюри радиоактивностью.

Записать в тетради “радиоактивность” – (лат) radio – излучаю, aсtivus – действенный.

Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными

В 1899 году под руководством английского ученого Э. Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

Информационная справка

Эрнест Резерфорд английский физик, родился 30 августа 1871 г. в Новой Зеландии. Его исследования посвящены радиоактивности, атомной и ядерной физике. Своими фундаментальными открытиями в этих областях Резерфорд заложил основы современного учения о радиоактивности и теории строения атома. Умер 19 октября 1937 г.

В результате опыта, проведенного под руководством английского физикаЭрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Рассмотрим, как проводился этот опыт.

На рисунке 1 изображен толстостенный свинцовый сосуд с крупицей радия на дне. Пучок радиоактивного излучения радия выходит сквозь узкое отверстие и попадает на фотопластинку (излучение радия направлено во все стороны, но сквозь толстый слой свинца оно пройти не может). После проявления фотопластинки на ней обнаруживалось одно (рис. 1) темное пятно – как раз в том месте, куда попадал пучок.

Потом опыт изменяли (рис.2), создали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других – по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом – отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда.

Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные – бета-частицами, а нейтральные – гамма (рис. 2) квантами. Некоторое время спустя в результате исследования некоторых физических характеристик и свойств этих частиц (электрического заряда, массы, проникающей способности) удалось установить, что гамма – кванты или лучи – это коротковолновое электромагнитное излучение, скорость распространения электромагнитного излучения такая же, как и у всех электромагнитных волн – 300000 км/с. Гамма – лучи проникают в воздух на сотни метров.

Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м.

Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц

20000 км/с, что превышает скорость современного самолета (1000 км/ч) в 72000 раз. Альфа – лучи проникают в воздух до 10 см.

Итак, явление радиоактивности, т.е. самопроизвольного излучения веществом? -, ? – и? – частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав.

V. Закрепление знаний.

VII. Подведение итога урока.

В статье рассказывается о том, кто открыл явление радиоактивности, когда это произошло и при каких обстоятельствах.

Радиоактивность

Современный мир и промышленность уже вряд ли смогут обойтись без атомной энергетики. Ядерные реакторы питают подводные лодки, обеспечивают электричеством целые города, а специальные источники энергии, основанные на устанавливают на искусственные спутники и роботов, которые изучают другие планеты.

Радиоактивность была открыта в самом конце XIX века. Впрочем, как и многие другие важнейшие открытия в различных областях науки. Но кто из ученых впервые открыл явление радиоактивности и как это произошло? Об этом мы и поговорим в данной статье.

Открытие

Это очень важное для науки событие произошло в 1896 году и совершил его А. Беккерель при изучении возможной связи люминесценции и недавно открытых так называемых рентгеновских лучей.

По воспоминаниям самого Беккереля, ему пришла мысль о том, что, может быть, любая люминесценция также сопровождается рентгеновскими лучами? Для того чтобы проверить свою догадку, он использовал несколько химических соединений, в том числе и одну из солей урана, которая светилась в темноте. Далее, подержав ее под солнечными лучами, ученый завернул соль в темную бумагу и убрал в шкаф на фотопластинку, которая, в свою очередь, также была упакована в светонепроницаемую обертку. Позже, проявив ее, Беккерель заменил точное изображение куска соли. Но поскольку люминесценция преодолеть бумагу не могла, то значит, засветило пластинку именно рентгеновское излучение. Так что теперь мы знаем, кто впервые открыл явление радиоактивности. Правда, сам ученый тогда еще не до конца понимал, какое открытие совершил. Но обо всем по порядку.

Заседание Академии наук

Чуть позже в том же году, на одном из заседаний в Академии наук Парижа, Беккерель сделал доклад «Об излучении, производимом фосфоресценцией». Но спустя некоторое время в его теорию и выводы пришлось внести корректировки. Так, во время одного из опытов, не дождавшись хорошей и солнечной погоды, ученый положил на фотопластинку соединение урана, которое светом не облучалось. Тем не менее на пластинке все равно отразилась четкая его структура.

Второго марта того же года Беккерель представил заседанию Академии наук новую работу, в которой рассказывалось о радиации испускаемой фосфоресцирующими телами. Теперь нам известно, кто из ученых открыл явление радиоактивности.

Дальнейшие опыты

Занимаясь дальнейшими исследованиями явления радиоактивности, Беккерель перепробовал много веществ, в том числе и металлический уран. И всякий раз на фотопластинке неизменно оставались следы. А поместив между источником излучения и пластинкой металлический крестик, ученый получил, как сейчас сказали бы, его рентгеновский снимок. Так что мы разобрали вопрос о том, кто открыл явление радиоактивности.

Именно тогда стало понятно, что Беккерель открыл совершенно новый тип невидимых лучей, которые способны проходить сквозь любые предметы, но в то же время они не являлись рентгеновскими.

Также было выяснено то, что интенсивность зависит от количества самого урана в химических препаратах, а не от их видов. Именно Беккерель поделился своими научными достижениями и теориями с супругами Пьером и Марией Кюри, которые впоследствии установили радиоактивность, испускаемую торием, и открыли два совершенно новых элемента, позже названых полонием и радием. И при разборе вопроса «кто открыл явление радиоактивности» часто многие ошибочно приписывают эту заслугу супругам Кюри.

Влияние на живые организмы

Когда стало известно, что испускают все соединения урана, Беккерель постепенно вернулся к изучению люминофора. Но он успел сделать еще одно важнейшее открытие — влияние радиоактивных лучей на биологические организмы. Так что Беккерель был не только первым, кто открыл явление радиоактивности, но и тем, кто установил его влияние на живых существ.

Для одной из лекций он одолжил радиоактивное вещество у супругов Кюри и положил его в карман. После лекции, вернув его владельцам, ученый заметил сильное покраснение кожи, которое имело форму пробирки. выслушав его догадки, решился на эксперимент — в течении десяти часов носил привязанную к руке пробирку, содержащую радий. И в итоге получил сильнейшую язву, которая не заживала несколько месяцев.

Так что мы разобрали вопрос о том, кто из ученых впервые открыл явление радиоактивности. Именно так было открыто влияние радиоактивности на биологические организмы. Но несмотря на это, супруги Кюри, кстати, продолжали заниматься изучением радиационных материалов, а погибла именно от лучевой болезни. Ее личные вещи до сих пор содержатся в специальном освинцованном хранилище, поскольку накопленная ими доза радиации почти сотню лет назад до сих пор остается слишком опасной.

Открытие радиоактивности — страница №1/1

Физика 9 класс.

Тема:

«Открытие радиоактивности»

Учительница физики

МБОУ СОШ № 18

Абдуллаева Зухра Алибековна

Махачкала 2013 г.

Урок физики по теме «Открытие радиоактивности»

Учитель – Абдуллаева Зухра Алибековна

Цели урока:


  • обеспечить в ходе урока усвоение понятий «радиоактивность», альфа-, бета-, гамма — излучение.

  • продолжить формирование у обучающихся научного мировоззрения.

  • развивать навыки культуры речи, творческую активность, творческие способности учащихся.
Оборудование:

  • Компьютер, проектор, интерактивная доска.

  • Компьютерная презентация «Открытие радиоактивности»

  • Рабочая тетрадь ученика
Ход урока

I. Организационный момент (приветствие, проверка готовности обучающихся к уроку)

Изучение нового материала. (Приложение 1. Компьютерная презентация «Открытие радиоактивности»)

Сегодня мы начинаем изучать четвертую главу нашего учебника, она называется «Строение атома и атомного ядра. Использование энергии атомных ядер». Тема нашего урока «Открытие радиоактивности» (запись в тетради даты и темы урока).

Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческим философом Демокритом еще 2500 лет назад. Частицы были названы атомами, что означает неделимые. Таким названием Демокрит хотел подчеркнуть, что атом — это мельчайшая, простейшая, не имеющая составных частей и поэтому неделимая частица. (Слайд 3) Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру, и что в их состав входят электрически заряженные частицы.

Наиболее ярким свидетельством сложного строения атомов явилось открытие явления радиоактивности, сделанное французским физиком Анри Беккерелем в 1896г. Открытие радиоактивности было непосредственно связано с открытием Рентгена. Более того, некоторое время думали, что это один и тот же вид излучения.

Лучи Рентгена. В декабре 1895 г Вильгельм Конрад Рентген (Слайд) сообщил об открытии нового вида лучей, которые он назвал Х-лучами. До сих пор в большинстве стран они так и называются, но в Германии и России принято предложение немецкого биолога Рудольфа Альберта фон Кёлликера (1817–1905) называть лучи рентгеновскими. Эти лучи возникают, когда быстро летящие в вакууме электроны (катодные лучи) сталкиваются с препятствием. (Слайд) Было известно, что при попадании катодных лучей на стекло, оно испускает видимый свет – зеленую люминесценцию. Рентген обнаружил, что одновременно от зеленого пятна на стекле исходят какие-то другие невидимые лучи. Это произошло случайно: то в темной комнате светился находящийся неподалеку экран, покрытый тетрацианоплатинатом бария Ba (раньше его называли платиносинеродистым барием). Это вещество дает яркую желто-зеленую люминесценцию под действием ультрафиолетовых, а также катодных лучей. Но катодные лучи на экран не попадали, и более того, когда прибор был закрыт черной бумагой, экран продолжал светиться. Вскоре Рентген обнаружил, что излучение проходит через многие непрозрачные вещества, вызывает почернение фотопластинки, завернутой в черную бумагу или даже помещенной в металлический футляр. Лучи проходили через очень толстую книгу, через еловую доску толщиной 3 см, через алюминиевую пластину толщиной 1,5 см. .. Рентген понял возможности своего открытия: “Если держать руку между разрядной трубкой и экраном, – писал он, – то видны темные тени костей на фоне более светлых очертаний руки”. Это было первое в истории рентгеноскопическое исследование.

Открытие Рентгена мгновенно облетело весь мир и поразило не только специалистов. В канун 1896 в книжном магазине одного немецкого города была выставлена фотография кисти руки. На ней были видны кости живого человека, а на одном из пальцев – обручальное кольцо. Это была снятая в рентгеновских лучах фотография кисти жены Рентгена.

Лучи Беккереля. Открытие Рентгена вскоре привело к не менее выдающемуся открытию. Его сделал в 1896 французский физик Антуан Анри Беккерель. (Слайд) Он был 20 января 1896 на заседании Академии, на котором физик и философ Анри Пуанкаре рассказал об открытии Рентгена и продемонстрировал сделанные уже во Франции рентгеновские снимки руки человека. Пуанкаре не ограничился рассказом о новых лучах. Он высказал предположение, что эти лучи связаны с люминесценцией и, возможно, всегда возникают одновременно с этим видом свечения, так что, вероятно, можно обойтись и без катодных лучей. Свечение веществ под действием ультрафиолета было знакомо Беккерелю: им занимались и его отец Александр Эдмонд Беккерель (1820–1891), и дед Антуан Сезар Беккерель (1788–1878) – оба физики; физиком стал и сын Антуана Анри Беккереля – Жак, который “по наследству” принял кафедру физики при парижском Музее естественной истории, эту кафедру Беккерели возглавляли 110 лет, с 1838 по 1948.

Беккерель решил проверить, связаны ли лучи Рентгена с флуоресценцией. Яркой желто-зеленой флуоресценцией обладают некоторые соли урана, например, уранилнитрат UO2(NO3)2. Такие вещества были в лаборатории Беккереля, где он работал. С препаратами урана работал еще его отец, который показал, что после прекращения действия солнечного света их свечение исчезает очень быстро – менее чем за сотую долю секунды. Однако никто не проверял, сопровождается ли это свечение испусканием каких-то других лучей, способных проходить сквозь непрозрачные материалы, как это было у Рентгена. Именно это после доклада Пуанкаре решил проверить Беккерель.

(Слайд) Открытие радиоактивности – явления, доказывающего сложный состав атомного ядра, произошло благодаря счастливой случайности. Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет. После проявления пластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое-то излучение, которое, подобно рентгеновскому, пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей.

Но однажды, в феврале 1896 г., провести очередной опыт ему не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без влияния внешних факторов создают какое-то излучение.

Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану, его атомам

Естественно ученые попытались обнаружить, не обладают ли способностью к самопроизвольному излучению другие химические элементы. В эту работу внесла большой вклад Мария Склодовская-Кюри.

Мария Склодовская-Кюри и Пьер Кюри.
Открытие радия и полония.

(Слайд) В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер
Кюри, доказали радиоактивность тория, выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий. Так были открыты два неизвестных ранее радиоактивных элемента — полоний и радий, Это был изнурительный труд, в течение долгих четырех лет супруги почти не выходили из своего сырого и холодного сарая. (Слайд) Полоний (Po-84) был назван в честь родины Марии – Польши. Радий (Ra-88)– лучистый, термин радиоактивность предложен был Марией Склодовской. Радиоактивными являются все элементы с порядковыми номерами более 83, т. е. расположенными в таблице Менделеева после висмута. За 10 лет совместной работы они сделали очень многое для изучения явления радиоактивности. Это был беззаветный труд во имя науки – в плохо оборудованной лаборатории и при отсутствии необходимых средств. Препарат радия исследователи получили в 1902 году в количестве 0,1 гр. Для этого им потребовалось 45 месяцев напряженного туда и более 10000 химических операций освобождения и кристаллизации. (Слайд)

Недаром Маяковский сравнивал поэзию с добычей радия:


«Поэзия – та же добыча радия.
В грамм добыча, в год труды.
Изводишь единого слова ради
тысячи тонн словесной руды.»
В 1903 году за открытие в области радиоактивности супругам Кюри и А.Беккерелю была присуждена Нобелевская премия по физике.

Беккерель и супруги Кюри создали первую научную школу изучения радиоактивности. В ее стенах было сделано немало выдающихся открытий. Судьба оказалась неблагосклонной к основателям школы. Пьер Кюри трагически погиб 17 апреля 1906 г. , Анри Беккерель преждевременно скончался 25 августа 1908 г. (Слайд )

Мария Склодовская-Кюри продолжила исследования. Она получила поддержку со стороны государства. В Сорбонне была создана специально для нее Лаборатория радиоактивности. (Слайд)

В 1914 г. закончилось строительство Института радия, и она стала его директором. До последних дней своих она следовала девизу Пьера: «Что бы ни случилось, надо работать».

Марии предстояло завершить радиевую «эпопею»: получить металлический радий. Ей помогал ее многолетний сотрудник Андрэ Дебьерн (кстати, именно он открыл новый радиоактивный элемент – актиний).

В мартовском номере «Докладов Парижской академии наук» за 1910 г. появилась их короткая статья, в которой сообщалось о выделении около 0,1 г металла. Позднее это событие включили в число семи наиболее выдающихся научных достижений первой четверти ХХ в.

В 1911 г. Мария Кюри получила свою вторую Нобелевскую премию – по химии.

Свойство элементов непрерывно и без каких -либо внешних воздействий испускать невидимое излучение которое способно проникать сквозь непрозрачные экраны и оказывать фотографическое и ионизирующее действие получило название радиоактивности, а само излучение – радиоактивным излучением.

(слайд )
Свойства радиоактивного излучения (Слайд)


  • Ионизируют воздух;

  • Действуют на фотопластинку;

  • Вызывают свечение некоторых веществ;

  • Проникают через тонкие металлические пластинки;

  • Интенсивность излучения пропорциональна концентрации вещества;

  • Интенсивность излучения не зависит от внешних факторов (давление, температура, освещенность, электрические разряды).
Сложный состав радиоактивного излучения. Опыт Резерфорда

В 1899 году под руководством английского ученого Э. Резерфорда, (Слайд) был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения. В результате опыта, проведенного под руководством английского физика Эрнеста Резерфорда, было обнаружено, что радиоактивное излучение радия неоднородно, т.е. оно имеет сложный состав. Рассмотрим, как проводился этот опыт.

На слайде изображен толстостенный свинцовый сосуд с крупицей радия на дне. Пучок радиоактивного излучения радия выходит сквозь узкое отверстие и попадает на фотопластинку (излучение радия направлено во все стороны, но сквозь толстый слой свинца оно пройти не может). После проявления фотопластинки на ней обнаруживалось одно темное пятно — как раз в том месте, куда попадал пучок (Слайд)

Потом опыт изменяли, (Слайд) создали сильное магнитное поле, действовавшее на пучок. В этом случае на проявленной пластинке возникало три пятна: одно, центральное, было на том же месте, что и раньше, а два других — по разные стороны от центрального. Если два потока отклонились в магнитном поле от прежнего направления, значит, они представляют собой потоки заряженных частиц. Отклонение в разные стороны свидетельствовало о разных знаках электрических зарядов частиц. В одном потоке присутствовали только положительно заряженные частицы, в другом — отрицательно заряженные. А центральный поток представлял собой излучение, не имеющее электрического заряда.

Положительно заряженные частицы назвали альфа-частицами, отрицательно заряженные — бета-частицами, а нейтральные — гамма квантами.

Проникающая способность различных видов излучений

Эти три вида излучения очень сильно различаются по проникающей способности, т. е. по тому, насколько интенсивно они поглощаются различными веществами. Наименьшей проникающей способностью обладают-лучи. (Слайд) Слой бумаги толщиной около 0,1 мм для них уже непрозрачен. Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего -излучению.

Гораздо меньше поглощаются при прохождении через вещество -лучи. (Слайд) Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров. Наибольшей проникающей способностью обладают .-лучи.

(Слайд) Интенсивность поглощения -лучей усиливается с увеличением атомного номера вещества-поглотителя. Но и слой свинца толщиной в 1 см не является для них непреодолимой преградой. При прохождении -лучей через такой слой свинца их интенсивность ослабевает лишь вдвое. Видео

Физическая природа -, — и -лучей, очевидно, различна.

Физическая природа различных видов излучения (Слайд)

Гамма-лучи. По своим свойствам -лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводило на мысль, что -лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция -лучей на кристаллах и измерена их длина волны. Она оказалась очень малой — от 10 -8 до 10 -11 см.

На шкале электромагнитных волн -лучи непосредственно следуют за рентгеновскими. Скорость распространения у -лучей такая же, как у всех электромагнитных волн, — около 300 000 км/с.

Бета-лучи. С самого начала — и -лучи рассматривались как потоки заряженных частиц. Проще всего было экспериментировать c -лучами, так как они сильнее отклоняются как в магнитном, так и в электрическом поле.

Основная задача экспериментаторов состояла в определении заряда и массы частиц. При исследовании отклонения -частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света. Существенно, что скорости -частиц, испущенных каким-либо радиоактивным элементом, неодинаковы. Встречаются частицы с самыми различными скоростями. Это и приводит к расширению пучка -частиц в магнитном поле (см. рис. 13.6).

Альфа-частицы. Труднее было выяснить природу -частиц, так как они слабее отклоняются магнитным и электрическим полями. Окончательно эту задачу удалось решить Резерфорду. Он измерил отношение заряда q частицы к ее массе m по отклонению в магнитном поле. Оно оказалось примерно в 2 раза меньше, чем у протона — ядра атома водорода. Заряд протона равен элементарному, а его масса очень близка к атомной единице массы 1 . Следовательно, у -частицы на один элементарный заряд приходится масса, равная двум атомным единицам массы.

Но заряд -частицы и ее масса оставались, тем не менее, неизвестными. Следовало измерить либо заряд, либо массу -частицы. С появлением счетчика Гейгера стало возможным проще и точнее измерить заряд. Сквозь очень тонкое окошко — частицы могут проникать внутрь счетчика и регистрироваться им.

Резерфорд поместил на пути -частиц счетчик Гейгера, который измерял число чacтиц, испускавшихся радиоактивным препаратом за определенное время. Затем он поставил на место счетчика металлический цилиндp, соединенный с чувствительным электрометром (рис. 13.7). Электрометром Резерфорд измерял заряд — частиц испущенных источником внутрь цилиндра за такое же время (радиоактивность многих веществ почти не меняется со временем). Зная суммарный заряд -частиц и их число, Резерфод определил отношение этих величин, т. е. заряд одной -частицы. Этот заряд оказался равным двум элементарным.

Таким образом, он устаиовил, что у -частицы на каждый из двух элементарных зарядов приходится две атомные единицы массы. Следовательно, на два элементарных заряда приходится четыре атомные единицы массы. Такой же заряд и такую же относительную атомную массу имеет ядро гелия. Из этого следует, что — часчица — это ядро атома гелия.

Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном -распаде образуется именно гелий. Собирая -частицы внутри специального резервуара на протяжении нескольких дней, он с помощью спектрального анализа убедился в том, что в сосуде накапливается гелий (каждая -частица захватывала два электрона и превращалась в атом гелия).

Итак, явление радиоактивности, т.е. самопроизвольного излучения веществом -, — и — частиц, наряду с другими экспериментальными фактами, послужило основанием для предположения о том, что атомы вещества имеют сложный состав.

Закрепление знаний.

1. Первичное закрепление.

1. В чем заключается открытие, сделанное Беккерелем в 1896г?

2. Кто из ученых занимался исследованием данных лучей?

3. Как и кем было названо явление самопроизвольного излучения некоторыми атомами?

4. В ходе исследования явления радиоактивности, какие неизвестные ранее химические элементы были открыты

5. Как были названы частицы, входящие в состав радиоактивного излучения?

6. Почему в магнитном поле радиоактивное излучение распалось на три пучка?

7. Какова природа α-частицы? Каков ее заряд и масса?

8. Что представляют собой β-частицы?

9. С какой скоростью распространяются γ-лучи? Какие свойства γ-лучей вы знаете?

Самостоятельная работа. Самостоятельное выполнение заданий в рабочих тетрадях.

1. Кто впервые наблюдал радиоактивное излучение урана? __________________________.

2. Как были названы новые химические элементы, способные к самопроизвольному излучению, обнаруженные супругами Кюри? ____________________________________ .

3. Что такое радиоактивность? ________________________________________ .

4. Кто впервые ввел термин «радиоактивность»? _____________________________ .

5. Что представляет собой -излучение, -излучение, -излучение? __________________________________________________________________________ .

7. Каково направление индукции магнитного поля?

8. Заполните таблицу



Излучение

Заряд

Проник. способность

Примеры

Природа

α

+

min

бумага пробег в воздухе 3-9 см
алюминий – 0,05 мм

Поток атомных ядер гелия 4 2 Не
υ= 14.000 — 20.000 км/с

β



чуть > α

Пробег в воздухе 40 см
свинец – 3 см

Поток электронов 0 — 1e
υ≈ 300.000 км/с

γ

0

max

пробег в воздухе неск. сот метров
свинец – до 5 см
тело человека пронизывают насквозь

Поток коротких эл-магн. волн (фотонов)
υ= 300.000 км/с

Учитель. 4. Радиоактивные превращения.
Изучение радиоактивности убеждает нас в том, что радиоактивные излучения испускаются атомными ядрами радиоактивных элементов. Это очевидно в отношении альфа частиц, так как в электронной оболочке их просто нет. Химические исследования обнаружили, что в веществах, испускающих бета излучение, накапливаются атомы элемента с порядковым номером на одну единицу превышающим порядковый номер бета излучателя. Например
20 10 Ne β → 20 11 Na β → 20 12 Mg β → 20 13 Al

Что же происходит с веществом при радиоактивном распаде?

Видео

Радиоактивные излучения испускаются атомными ядрами радиоактивных элементов

Испуская α- и β- излучение, атомы радиоактивного элемента изменяются, превращаясь в атомы нового элемента

В этом смысле испускание радиоактивных излучений называют радиоактивным распадом

Итак, запишите в тетрадь определение: Явление самопроизвольного превращения неустойчивых ядер атомов в ядра других атомов с испусканием частиц и излучением энергии называется естественной радиоактивностью.
radio — излучаю, aсtivus – действенный.

Правила смещения —
это правила, указывающие смещение элемента в периодической системе, вызванное распадом.
Превращение ядер подчиняется правилу смещения, сформулированному впервые английским ученым Ф. Содди.
Сообщение учащихся о Ф. Содди (портрет).
Фредерик Содди (2.09.1877 – 22.09. 1956) – английский физик, один из пионеров радиоактивности, член Лондонского королевского общества.
Вместе с Резерфордом разработал в 1902-1903 г. теорию радиоактивного распада и сформулировал закон радиоактивных превращений. В 1903 г. доказал наличие гелия в продуктах излучения радия. Независимо от других в 1918 г. открыл протактиний. Сформулировал α – правило. В 1913 г. Установил правило смещения при радиоактивном распаде.

Учитель При радиоактивном распаде выполняются законы сохранения массы и зараяда
Учитель. α – распад: Ядро теряет положительный заряд 2ē и масса его убывает на 4 а.е.м. Элемент смещается на 2 клетки к началу

A Z Х → A-4 Z-2 Y + 4 2 He

β – распад: из ядра вылетает электрон, заряд увеличивается на единицу, а масса остается почти неизменной. Элемент смещается на 1 клетку к концу периодической системы. (Слайд)

A Z Х → A Z+1 Y +


  • При испускании ядрами атомов нейтральных γ-квантов ядерных превращений не происходит. Испущенный γ-квант уносит избыточную энергию возбужденного ядра; числа протонов и нейтронов в нем остаются неизменными.
Проблемная ситуация. Вопрос к классу:
Если вы внимательно следите за моими рассуждениями, то должны мне задать вопрос. (Как же из ядра вылетают электроны, если их там нет ?!!!) Ответ: приβ – распаде нейтрон превращается в протон с испусканием электрона
1 0 n → 1 1 p + 0 -1e + υ (υ — антинейтрино)(Слайд)
γ – излучение не сопровождается изменением заряда, масса же ядра меняется ничтожно мало.

Решение задач.

Учитель у доски разбирает решение задач на правило смещения:


Задача 1 : Изотоп тория 230 90 Th испускает α-частицу. Какой элемент при этом образуется?
Решение: 230 90 Th α → 226 98 Ra + 4 2 He
Задача 2 : Изотоп тория 230 90 Th β-радиоактивен. Какой элемент при этом образуется?
Решение: 230 90 Th β → 230 91 Рa + 0-1e
Решение задач учащимися у доски:
Задача : Протактиний 231 91 Рa α –радиоактивен. С помощью правил «сдвига» и таблицы элементов Менделеева определите, какой элемент получается с помощью этого распада.
Решение: 231 91 Рa α → 227 89 Ас + 4 2 Не
Задача : В какой элемент превращения уран 239 92 U после двух β – распадов и одного α – распада?
Решение: 239 92 U β → 239 93 Np β → 239 94 Pu α → 235 92 U
Задача: Написать цепочку ядерных превращений неона 20 10 Ne: β, β, β, α, α, β, α, α
Решение: 20 10 Ne β → 20 11 Na β → 20 12 Mg β → 20 13 Al α → 16 11 Na α → 12 9 F β → 12 10 Ne α → 8 8 O α → 4 6 C
Промежуточное закрепление

1. Что называется радиоактивностью?

2. Какие известные вам законы сохранения выполняются при радиоактивных превращениях?
Самостоятельная работа (индивидуально, по карточкам (дифференциальный подход к учащимся)).

Сообщение ученика
Биологическое действие радиоактивного излучения

Как-то Беккерель, собираясь на одну из лекций, обнаружил, что у него нет урановой соли. Зайдя в лабораторию Кюри, взял пробирку с урановой солью и положил ее в карман костюма. После лекции вновь положил в карман и проходил так до возвращения домой. На следующий день он обнаружил в том месте, где лежала пробирка покраснение кожи. Беккерель показал супругам Кюри, предположив о действии урана на кожу.


Пьер Кюри решил проверить и привязал урановую пластину к предплечью и проходил так 10 часов. Вызванное облучением покраснение перешло в сильную язву и не заживало в течение почти 2 лет. Таким образом, Пьер открыл биологическое действие радиоактивного излучения.

Вот что пишет М.П.Шаскольская: «В те далекие годы, на заре атомного века, первооткрыватели радия не знали о действии излучения. Радиоактивная пыль носилась в их лаборатории. Сами экспериментаторы спокойно брали руками препараты, держали их в кармане, не ведая о смертельной опасности. К счетчику Гейгера поднесен листок из блокнота Пьера Кюри (через 55 лет после того, как в блокноте велись записи!), и ровный гул сменяется шумом, чуть ли не грохотом. Листок излучает, листок как бы дышит радиоактивностью».

Сейчас известно, что радиоактивные излучения при определенных условиях могут представлять опасность для здоровья живых организмов. В чем причина негативного воздействия радиации на живые существа?

Дело в том что, что α-, и β — частицы, проходя через вещество, ионизирует его, выбивая электроны из молекул и атомов. Ионизация живой ткани нарушает жизнедеятельность клеток, из которых эта ткань состоит, что отрицательно сказывается на здоровье всего организма.

Степень и характер отрицательного воздействия радиации зависит от нескольких факторов, в частности, от того, какая энергия передана потоком ионизирующих частиц данному телу и какова масса этого тела. Чем больше энергии получает человек от действующего на него потока частиц и чем меньше при этом масса человека (т.е чем большая энергия приходится на каждую единицу массы),тем к более серьезным нарушениям в его организме это приведет.

Поглощенная доза-энергия ионизирующего излучения, поглощенная облучаемым теплом (тканями организма), в пересчете на единицу массы.

Эквивалентная доза — поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма.

В СИ единице поглощенной дозы излучения является 1 грэй (1Гр).

Известно, что чем больше поглощенной дозы излучения, тем больший вред может нанести организму это излучение.

Необходимо учитывать также, что при одинаковой поглощенной дозе разные виды излучений вызывают разные по величине биологические эффекты.

Например, при одной и той же поглощенной дозе биологический эффект от действия α- излучения будет в 20 раз больше, чем от γ- излучения, от действия быстрых нейтронов эффект может быть в 10 раз больше, чем от γ- излучения.

Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, необходимо учитывать соответствующие коэффициенты чувствительности тканей.

0,03- костная ткань

0,03- щитовидная железа

0,12- красный костный мозг

0,12- легкие

0,15- молочная железа

0,25- яичники и семенники

0,30- другие ткани

1,00- организм в целом

Даже малые дозы радиации не безвредны. Радиация может вызвать, прежде всего, генные и хромосомные мутации. Установлено, что вероятность заболевания раком возрастает прямо пропорционально дозе облучения.

Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяется лейкозы. За лейкозами «по популярности» следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушением, а в больших дозах приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

Учитель: Сегодня 26 апреля исполняется 27 лет со дня Чернобыльской трагедии. И мы, конечно, не могли обойти вниманием эту страшную дату.

Сообщение ученика об аварии на Чернобыльской АЭС


  • Чернобыльская авария — разрушение 26 апреля 1986 года 4 энергоблока ЧАЭС, расположенной на территории Украины. Разрушение носило взрывной характер, реактор был разрушен, и в окружающую среду было выброшено много радиоактивных веществ.

  • Около 200000 человек было эвакуировано из зон, подвергшихся загрязнению.

  • Излучение которым подверглись люди ведет к серьёзным дефектам, которые проявляются у детей и внуков человека, подвергшегося облучению, или у его отдаленных потомков.

    • Итог урока: Домашнее задание.

    • Во время подведения итога урока 2 учащихся проверяют самостоятельную работу.

Вопрос к классу:


6 июня 1905г. Пьер выступил на заседании Академии наук. Свою Нобелевскую речь он закончил следующими словами:

«Легко, далее, понять, что в преступных руках радий может представить серьезную опасность, и встает вопрос: выиграет ли человечество от познания тайн природы, достаточно ли оно созрело, чтобы ими пользоваться, или это познание обратиться ему во вред? Пример открытий Нобеля показателен в этом отношении: мощные взрывчатые вещества позволили человеку выполнять замечательные работы, но они же стали ужасным разрушительным средством в руках великих преступников, толкающих народы к войне. Я отношусь к числу тех, кто думает вместе с Нобелем, что человечество извлечет больше пользы, чем вреда из новых открытий».

В окно смотрели двое:

Один увидел дождь и грязь,

Другой листвы зелёной вязь

И небо голубое.

В окно смотрели двое.

За каждым открытием стоят люди. Человек во многом бывает сам виноват в своих бедах и трагедиях.

Прав ли был Прометей, давший людям огонь?

Мир рванулся вперед, мир сорвался с пружин.

Из прекрасного лебедя вырос дракон,

Из запретной бутылки был выпущен джин.

Радиоактивность-это природное явление, не зависящее от того, открыли его ученые или нет. Радиоактивными являются почва, осадки, горные породы, вода. Ядерная энергия — источник всего существующего. Солнце и звезды сияют благодаря ядерным реакциям, происходящим в их недрах. Открытие этого явления повлекло за собой его использование на пользу и во вред. Ученые больше чем кто- либо осознают ответственность, которую они несут перед обществом, вмешиваясь в дела Природы.

В настоящее время идет много споров на тему: радиация — это добро или зло, радиация — наш друг или враг? Так что же это такое?

Так, что же такое радиоактивность: подарок или проклятие? Мы начинали урок с ваших ассоциаций со словом радиоактивность. Какой вы представляете себе радиоактивность теперь? Что бы вы могли рассказать о радиоактивности, например, младшим школьникам.

Творческая работа учащихся.

В вашей власти, в вашей власти.

Что бы все не раскололось

На бессмысленные части.

Человек всегда должен помнить, что Природа мудра, и, вторгаясь в ее тайны, нельзя нарушать ее законы. В своих действиях нужно руководствоваться правилом: «Не навреди!”, быть осмотрительным, внимательным, просчитывать десятки связей и ходов наперед, а главное — всегда помнить о других людях, ценности жизни, уникальности нашей планеты. Радиоактивность отнюдь не новое явление, новизна лишь состоит в том, как люди пытались ее использовать

Жизнь на Земле хрупка и беззащитна перед человеком. Один неверный шаг, и она прервется. Первый человек планеты, кому посчастливилось увидеть землю из Космоса, Ю.А.Гагарин сравнил цветовую гамму красок Земли с красками полотен Николая Рериха. Но он же поведал о том, какой хрупкой и беззащитной кажется из Космоса наша планета…

Клиника Ито

Общая информация о лечении

Лечение на линейном ускорителе – это облучение патологического очага высокоэнергретическим радиоактивным излучением с использованием линейного ускорителя (аппарат лучевой терапии) для уменьшения или уничтожения опухоли.
Радиоактивное излучение повреждает гены (ДНК) опухолевых клеток и разрушает их. Используя эту особенность, можно добиться излечения опухоли или смягчения болевых и других симптомов, вызванных ростом опухоли. Здоровые клетки также повреждаются радиоактивным излучением, но обладают более высокими восстановительными свойствами по сравнению с опухолевыми клетками. Поэтому облучение происходит ежедневно небольшими дозами в целях разрушения опухолевых клеток и сведения к минимуму ущерба для здоровых клеток.

Заболевания, подлежащие лучевой терапии

  • Злокачественная лимфома щитовидной железы
  • Рак щитовидной железы
  • Костные метастазы рака щитовидной железы
  • Эндокринная офтальмопатия (доброкачественное заболевание)

Ход лечения

(1) Консультация перед началом лечения
Наряду с изготовлением иммобилайзера, проводится обследование на компьютерном томографе и определяется участок и доза облучения.
(2) Проверка на имитаторе
С использованием измерительных приборов проводится проверка, распределяется ли установленная доза облучения запланированным образом.
Такая проверка проводится лечащим врачом и радиологом до начала лечения.
(3) Первый день лечения
Для проверки зоны облучения проводится КТ с надетым иммобилайзером.
Манипуляции по проверке правильности позиции занимают ок. 30 мин.
Лечение начинается после нанесения на иммобилайзер отметок, которые станут отправной точкой для последующих сеансов.
Облучение радиоактивными лучами занимает несколько минут.
После сеанса проводится консультация врача.
(4) Со 2 день лечения
Время пребывания в лечебном кабинете: ок. 10 мин.
При лечении рака щитовидной железы и костных метастазов рака щитовидной железы 1 раз в неделю, как и при первом сеансе, проводится КТ и проверка соответствия зоны облучения.
При лечении других видов рака, в случае необходимости, облучение проводится после соответствующего уточнения зоны.
После каждого сеанса проводится консультация врача.
(5) Срок лечения и результаты
При эндокринной офтальмопатии, как правило, проводится 10 сеансов облучения в течение 2 недель.
Для других заболеваний срок лечения разнится в зависимости от зоны и необходимой дозы облучения.
Для появления результатов лечения может потребоваться несколько месяцев, а также 1 год.

Побочные эффекты

Большинство побочных эффектов лучевой терапии проявляется на участках, подвергнутых облучению. При облучении головы проявляется алопеция и тошнота, при облучении шейного отдела – боли в горле, затрудненное слюноотделение и т.д. Кроме того, возможно покраснение кожи в зоне облучения. Побочные эффекты различны у всех пациентов, но обычно они проявляются после 10 сеанса облучения длятся в течение нескольких недель после завершения лечения, а затем постепенно угасают. Поэтому в целях раннего реагирования на проявление побочных эффектов необходимы регулярные посещения врача после окончания лечения.

Внедрение нового оборудования

В 2015 г. в нашей больнице был установлен новый линейный ускоритель.
Наибольшее отличие от прежнего аппарата состоит в возможности вести облучение, сконцентрированное на опухоли, посредством мультилепесткового коллиматора с шириной лепестков 5 мм. Облучение под разными углами позволяет еще более рассеять и сократить повреждение здоровых тканей. Сокращение зоны, подверженной сильному облучению, сводит к минимуму гиперемию кожи и алопецию и позволяет ожидать смягчения секреторных расстройств благодаря выведению слюнных желез за пределы зоны облучения.
Кроме того, значительно повысилась точность определения зоны облучения. Появилась возможность лучевой терапии под визуальным контролем (IGRT), что позволяет свести к минимуму погрешности при определении участков, на которые направлено радиоактивное излучение.

Другие вопросы, связанные с лечением

  • ・Возможно амбулаторное лечение.
  • ・Пребывание в больнице, включая консультацию и т.д., составляет от 1 часа до 1 часа 30 мин.
  • ・Для лечение головы и шеи используется иммобилайзер. На других участках тела отметки могут делаться специальным маркером для кожи.
  • ・Во время сеанса лучевой терапии пациент находится в кабинете один, но специалист наблюдает за ним через монитор. Кроме того, можно разговаривать через микрофон, а для экстренных случаев пациенту выдается зуммер. Если пациента что-то беспокоит, он всегда может обратиться к наблюдающему специалисту.
  • ・Во время лечения кожа на облучаемой зоне обнажается, но переодеваться не требуется.

Пояснительные комментарии к лечению

  • ・Кожа в зоне облучения подвержена воздействию радиоактивного излучения. Во время лечения воздержитесь от нанесения косметики и солнцезащитных кремов на облучаемые участки в целях устранения раздражителей и предупреждения дерматологических проблем. В течение 1 месяца после окончания лечения также необходимо избегать раздражителей, но в это время необходимо использовать солнцезащитные кремы и другие меры защиты от ультрафиолетовых лучей.
  • ・Во время лечения специфические ограничения в повседневной жизни отсутствуют, но некоторые пациенты могут ощущать усталость и вялость. Будьте внимательны к соблюдению режима дня.
  • ・Поскольку курение в период лучевой терапии может создавать препятствия лечению, следует воздерживаться от курения в период прохождения лечения и после него.

Радиоактивность. α-, β-, γ- излуч

Радиактивный распад в электрическом поле

  Радиоактивность

Все знают, что атомы вещества состоят из ядра и вращающихся вокруг него электронов. Ядро – это очень устойчивое образование, которое сложно разрушить. Однако, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство различную энергию и частицы. Это излучение называют радиоактивным. Оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение (альфа-, бета- и гамма-излучение).

Явление радиоактивности было открыто опытным путем французским ученым Анри Беккерелем в 1896 г. для солей урана. Беккерель заметил, что соли урана засвечивают завернутую во много слоев фотобумагу невидимым проникающим излучением.
Виды радиоактивных излучений и методы их регистрации.
Английский физик Эрнест Резерфорд исследовал радиоактивное излучение в электрических и магнитных полях. Он открыл две составляющие этого излучения, которые были названы α-, β-излучением. На рисунке изображено радиоактивное излучение в электрическом поле. 

  • a  излучение — это поток тяжелых положительно заряженных частиц (ядер гелия), движущихся со скоростью около 107 м/с. Вследствие положительного заряда  – частицы отклоняются электрическим и магнитным полями.
  • β — излучение — это поток быстрых электронов. Электроны —e значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. Обладают скоростью от 108 м/с до0,999с. Из-за наличия отрицательного заряда электроны отклоняются электрическим и магнитным полями в противоположную сторону по сравнению с β  – частицами.
  • γ –  излучение — это фотоны, т.е. электромагнитное излучение, несущее энергию. Оно не отклоняется электрическим и магнитным полями. Параметры ядра при излучении не меняются, ядро лишь переходит в состояние с меньшей энергией. Распавшееся ядро тоже радиоактивно, т. е. происходит цепочка последовательных радиоактивных превращений. Процесс распада всех радиоактивных элементов идет до свинца. Свинец — конечный продукт распада.

Было установлено, что проникающая способность оказалась самая малая у α- -лучей (лист бумаги или несколько сантиметров слоя воздуха),
а β-лучи проходят сквозь алюминиевую пластину толщиной в несколько миллиметров. Очень велика проникающая способность у γ — лучей (например, алюминий — толщина пластины десятки сантиметров).

Итак, радиоактивность свидетельствует о сложном строении атомов.
Специальные приборы, которые применяются для регистрации ядерных излучений, называются детекторами ядерных излучений. Наиболее широкое применение получили детекторы, которые обнаруживают ядерные излучения по производимой ими ионизации и возбуждению атомов вещества. Это — газоразрядный счетчик Гейгера, камера Вильсона, пузырьковая камера. Существует также метод фотоэмульсий, основанный на способности пролетающей частицы создавать в фотоэмульсии скрытое изображение. След пролетевшей частицы сквозь нее виден на фотографии после проявления.
 Влияние ионизирующей радиации на живые организмы
Радиоактивное излучение оказывает сильное биологическое действие на ткани живого организма. Оно ионизирует атомы и молекулы среды. Под действием ионизирующей радиации разрушаются сложные молекулы и элементы клеточных структур. В человеческом организме нарушается процесс кроветворения. Человек заболевает белокровием, или так называемой лучевой болезнью. Большие дозы облучения приводят к смерти.

Бумага задерживает только альфа-излучениеСтекло задерживает только альфа- и бета-излучениестальной лист задерживает только альфа-излучение, бета-излучение и гамма-излучениебетонная плита задерживает только альфа-,бета-, гамма- и и нейтронное излучение

Основы излучения — ORISE

Излучение — это энергия, которая исходит от источника и проходит через какой-либо материал или в космосе. Свет и тепло — это виды излучения. Вид излучения, обсуждаемый на этом сайте, называется ионизирующим излучением, потому что у него достаточно энергии, чтобы удалить электрон из атома, сделав этот атом ионом.

Для достижения стабильности эти атомы испускают или испускают избыточную энергию или массу в виде излучения. Два типа излучения — электромагнитное (например, свет) и твердое (т.е. масса, выделяемая вместе с энергией движения). Гамма-излучение и рентгеновские лучи являются примерами электромагнитного излучения. Бета- и альфа-излучение являются примерами излучения твердых частиц. Ионизирующее излучение также может производиться такими устройствами, как рентгеновские аппараты.

Облучение означает воздействие радиации. Облучение происходит, когда все или часть тела подвергается облучению от источника. Облучение не делает человека радиоактивным.

Радиоактивное загрязнение

Загрязнение происходит, когда радиоактивный материал попадает на кожу, одежду или любое другое место, где это нежелательно.Важно помнить, что радиация не распространяется, не проникает «внутрь» или «внутрь» людей; скорее, это радиоактивное загрязнение, которое может распространяться. Человек, зараженный радиоактивными материалами, будет облучаться до тех пор, пока источник излучения (радиоактивный материал) не будет удален.

  • Человек внешне загрязнен, если радиоактивный материал попал на кожу или одежду.
  • Человек является внутренне зараженным, если радиоактивный материал вдыхается, проглатывается или всасывается через раны.
  • Окружающая среда становится загрязненной, если радиоактивный материал распространяется или не удерживается.

Три типа излучения (альфа, бета и гамма)

Альфа-излучение

Радиация — это энергия в форме частиц или электромагнитных лучей, испускаемая радиоактивными атомами. Три наиболее распространенных типа излучения — это альфа-частицы, бета-частицы и гамма-лучи.

  • Альфа-излучение не проникает через кожу.
  • Альфа-излучающие материалы могут быть вредными для человека при вдыхании, проглатывании или всасывании через открытые раны.
  • Для измерения альфа-излучения было разработано множество инструментов. Специальное обучение использованию этих инструментов необходимо для проведения точных измерений.
  • Приборы не могут обнаружить альфа-излучение даже через тонкий слой воды, крови, пыли, бумаги или другого материала, потому что альфа-излучение проникает минимально.
  • Альфа-излучение распространяется по воздуху на очень короткие расстояния.
  • Альфа-излучение не может проникнуть через стрелочное снаряжение, одежду или покрытие зонда. Стрелочное снаряжение и одежда могут не допускать попадания альфа-излучателей на кожу. Необходимо использовать средства индивидуальной защиты, чтобы защитить одежду и иным образом непокрытую кожу от любого загрязнения.

Бета-излучение

  • Бета-излучение может перемещаться в воздухе на несколько метров и обладает средней проникающей способностью.
  • Бета-излучение может проникать через кожу человека в самый внутренний слой эпидермиса, где образуются новые клетки кожи. Если бета-излучающие загрязнители остаются на коже в течение длительного периода времени, они могут вызвать повреждение кожи.
  • Загрязняющие вещества, излучающие бета, могут быть вредными при хранении внутри.
  • Большинство бета-излучателей можно обнаружить с помощью исследовательского инструмента. Однако некоторые бета-излучатели производят излучение очень низкой энергии, плохо проникающее, которое может быть трудно или невозможно обнаружить.Примерами их являются углерод-14, тритий и сера-35.
  • Одежда и стрелковое снаряжение обеспечивают некоторую защиту от большей части бета-излучения. Необходимо использовать индивидуальные средства защиты, чтобы защитить одежду и иным образом открытую кожу от любого загрязнения.

Гамма-излучение

  • Гамма-излучение и рентгеновские лучи — это электромагнитное излучение, такое как видимый свет, радиоволны и ультрафиолетовый свет. Эти электромагнитные излучения различаются только количеством имеющейся энергии.Гамма-лучи и рентгеновские лучи — самые энергичные из них.
  • Гамма-излучение способно распространяться на многие метры в воздухе и на многие сантиметры в тканях человека. Легко проникает в большинство материалов.
  • Рентгеновские лучи похожи на гамма-лучи. Они также могут путешествовать на большие расстояния как в воздухе, так и в тканях человека.
  • Радиоактивные материалы, излучающие гамма-излучение и рентгеновские лучи, представляют собой как внешнюю, так и внутреннюю опасность для человека.
  • Для защиты от гамма-излучения необходимы плотные материалы.Одежда и стрелковое снаряжение обеспечивают слабую защиту от проникающей радиации, но предотвращают заражение кожи радиоактивными материалами.
  • Гамма-излучение обнаруживается приборами наблюдения, в том числе приборами гражданской обороны. Низкие уровни можно измерить с помощью стандартного счетчика Гейгера.
  • Гамма-излучение или рентгеновские лучи часто сопровождают испускание альфа- и бета-излучения.
  • Приборы, предназначенные исключительно для обнаружения альфа-излучения, не обнаруживают гамма-излучение.
  • Карманные камерные (карандашные) дозиметры, пленочные значки, термолюминесцентные и другие типы дозиметров могут использоваться для измерения накопленного воздействия гамма-излучения.

Определения излучения

В следующем списке представлены общие термины, которые используются для описания аспектов излучения.

Альфа-частица
A Энергичные ядра гелия (два протона и два нейтрона), испускаемые некоторыми радионуклидами с высокими атомными номерами (например,г., плутоний, радий, уран). Обладает малой пробивающей способностью и малой дальностью действия. Альфа-частицы обычно не проникают через кожу. Атомы, излучающие альфа, могут оказывать вредное воздействие на здоровье при попадании в легкие или раны.
Атом
Самый маленький кусочек элемента, который нельзя разделить или разрушить химическим путем.
Фоновое излучение
Радиация в естественной среде обитания человека, включая космические лучи и излучение от естественных радиоактивных элементов, как снаружи, так и внутри тел людей и животных.Его еще называют естественным излучением. Искусственные источники радиоактивности вносят вклад в общий уровень радиационного фона.
Беккерель
Единица измерения активности в системе СИ 1 распад в секунду; 37 миллиардов Бк = 1 кюри. (См. Коэффициенты пересчета в разделе «Измерения».)
Бета-частица
Маленькая частица, выброшенная радиоактивным атомом. Обладает умеренной проникающей способностью и дальностью действия до нескольких метров в воздухе.Бета-частицы проникают только в часть сантиметра кожной ткани.
Контролируемая зона
Зона, где вход, деятельность и выход контролируются для обеспечения радиационной защиты и предотвращения распространения загрязнения.
Космические лучи
Излучение высокой энергии, исходящее за пределами земной атмосферы.
Загрязнение
Осаждение радиоактивного материала в любом месте, где это нежелательно, особенно там, где его присутствие может быть вредным.
Кюри
Единица измерения, используемая для описания количества радиоактивности в образце материала.
Обеззараживание
Уменьшение или удаление загрязняющих радиоактивных материалов из конструкции, площади, объекта или человека.
Детектор
Устройство, чувствительное к излучению и способное генерировать ответный сигнал, подходящий для измерения или анализа. Прибор для обнаружения радиации.
Доза
Общий термин для количества поглощенной радиации или энергии.
Мощность дозы
Доза, доставленная за единицу времени. Обычно он выражается в радах в час или в единицах, кратных или дольных, например, в миллирадах в час. Мощность дозы обычно используется для обозначения уровня опасности от радиоактивного источника.
Дозиметр
Небольшое карманное устройство, используемое для контроля радиационного облучения персонала.
Электромагнитное излучение
Типы электромагнитного излучения варьируются от коротковолновых, таких как рентгеновские лучи и гамма-лучи, в ультрафиолетовой, видимой и инфракрасной областях, до радиолокационных и радиоволн относительно длинных волн.
Экспозиция
Величина, используемая для обозначения степени ионизации воздуха, вызванной рентгеновским или гамма-излучением. Единица — рентген (R). Для практических целей один рентген сравним с 1 рад или 1 бэр для рентгеновского и гамма-излучения.Единица воздействия в системе СИ — кулон на килограмм (Кл / кг). Один R = 2,58 x 10 -4 Кл / кг.
Гамма-излучение или гамма-излучение
Электромагнитное излучение высокой энергии. Гамма-лучи являются наиболее проникающим типом излучения и представляют собой основную внешнюю опасность.
Счетчик Гейгера или G-M-метр
Прибор, используемый для обнаружения и измерения радиации.
Серый
Единица измерения поглощенной дозы в системе СИ; 1 серый = 100 рад
Закон обратных квадратов
Соотношение, которое гласит, что интенсивность электромагнитного излучения обратно пропорциональна квадрату расстояния от точечного источника.
Ионизация
Производство заряженных частиц в среде.
Ионизирующее излучение
Электромагнитное (рентгеновское и гамма-излучение) или дисперсное (альфа, бета) излучение, способное производить ионы или заряженные частицы.
Облучение
Воздействие ионизирующего излучения.
Мониторинг
Определение количества присутствующего ионизирующего излучения или радиоактивного загрязнения.Также называется геодезией.
Рад
Единица поглощенной дозы излучения.
Излучение
Энергия, перемещающаяся в космосе.
Радиоактивность
Спонтанное излучение ядра нестабильного атома. В результате этого излучения радиоактивный атом превращается или распадается в атом другого элемента, который может быть или не быть радиоактивным.
Рем
Доза облучения, связанная с биологическим действием.
Рентген
Единица экспозиции рентгеновского или гамма-излучения (см. Экспозицию).
Закрытый источник
Радиоактивный источник, помещенный в контейнер, имеющий достаточную механическую прочность, чтобы предотвратить контакт с дисперсией радиоактивного материала в условиях использования и износа, для которых он был разработан.
Зиверт
Единица эквивалентной дозы в системе СИ; 1 Зв = 100 бэр.
Рентгеновские снимки
Проникающее электромагнитное излучение, длина волны которого короче, чем у видимого света.

Какие типы излучения существуют?

Обычно встречается излучение одного из четырех типов: альфа радиация, бета-излучение, гамма-излучение и рентгеновское излучение. Нейтрон радиация встречается также на атомных электростанциях и высотных полет и выброшены из некоторых промышленных радиоактивных источников.

  1. Альфа-излучение

    Альфа-излучение — это тяжелая частица с очень малым радиусом действия и на самом деле выброшенное ядро ​​гелия. Некоторые характеристики альфа-излучения:

    • Большая часть альфа-излучения не проникает через кожу человека.
    • Альфа-излучающие материалы могут быть вредными для человека при вдыхании, проглатывании или всасывании через открытые раны.
    • Для измерения альфа радиация.Специальное обучение использованию этих инструментов проводится. необходим для проведения точных измерений.
    • Зонд Гейгера-Мюллера (GM) с тонким окном может обнаруживать присутствие альфа-излучения.
    • Приборы не могут обнаружить альфа-излучение даже через тонкий слой воды, пыли, бумаги или другого материала, потому что альфа-излучение не проникающий.
    • Альфа-излучение распространяется только на небольшое расстояние (несколько дюймов) в воздухе, но не является внешней опасностью.
    • Альфа-излучение не проникает через одежду.

    Примеры некоторых альфа-излучателей: радий, радон, уран, торий.
  2. Бета-излучение

    Бета-излучение — это легкая частица с коротким радиусом действия, которая фактически представляет собой выброшенный электрон. Некоторые характеристики бета-излучения:

    • Бета-излучение может перемещаться по воздуху на несколько футов и обладает средней проникающей способностью.
    • Бета-излучение может проникать в кожу человека до «зародышевого слоя», где производятся новые клетки кожи. Если высокий уровень бета-излучения загрязняющие вещества могут оставаться на коже в течение длительного периода со временем они могут вызвать повреждение кожи.
    • Загрязняющие вещества, излучающие бета, могут быть вредными при хранении внутри.
    • Большинство бета-излучателей можно обнаружить с помощью исследовательского инструмента и Зонд GM с тонким окном (например,г., «блинного» типа). Некоторые бета-излучатели, однако производить очень низкоэнергетическое, плохо проникающее излучение, которое может быть трудно или невозможно обнаружить. Примеры этих труднообнаруживаемыми бета-излучателями являются водород-3 (тритий), углерод-14, и сера-35.
    • Одежда обеспечивает некоторую защиту от бета-излучения.

    Примеры некоторых чистых бета-излучателей: стронций-90, углерод-14, тритий и сера-35.
  3. Гамма и рентгеновское излучение

    Гамма-излучение и рентгеновское излучение — это электромагнитное излучение с высокой проникающей способностью.Некоторые характеристики этих излучений:

    • Гамма-излучение или рентгеновские лучи способны перемещаться по воздуху на много футов и много дюймов в человеческой ткани. Они легко проникают через большинство материалов и иногда называются «проникающим» излучением.
    • Рентгеновские лучи похожи на гамма-лучи. Рентгеновские лучи тоже проникают. Закрытые радиоактивные источники и машины, излучающие гамма-излучение и x соответственно, лучи представляют собой в основном внешнюю опасность для человека.
    • Гамма-излучение и рентгеновское излучение представляют собой электромагнитное излучение, подобное видимый свет, радиоволны и ультрафиолетовый свет. Эти электромагнитные излучения различаются только количеством имеющейся энергии. Гамма излучение и рентгеновские лучи — самые энергичные из них.
    • Для защиты от гамма-излучения необходимы плотные материалы. Одежда мало защищает от проникающей радиации, но предотвратить загрязнение кожи гамма-излучением радиоактивных веществ материалы.
    • Гамма-излучение легко обнаруживается измерительными приборами с детектором из йодида натрия.
    • Гамма-излучение и / или характеристические рентгеновские лучи часто сопровождают испускание альфа- и бета-излучения при радиоактивном распаде.

    Примеры некоторых гамма-излучателей: йод-131, цезий-137, кобальт-60, радий-226 и технеций-99m.

Информация, размещенная на этой веб-странице, предназначена только в качестве общей справочной информации.Конкретные факты и обстоятельства могут повлиять на применимость описанных здесь концепций, материалов и информации. Предоставленная информация не заменяет профессиональную консультацию, и на нее нельзя полагаться в отсутствие такой профессиональной консультации. Насколько нам известно, ответы верны на момент публикации. Имейте в виду, что со временем требования могут измениться, могут появиться новые данные, а ссылки в Интернете могут измениться, что повлияет на правильность ответов.Ответы — это профессиональное мнение эксперта, отвечающего на каждый вопрос; они не обязательно отражают позицию Общества физиков здоровья.

Радиоактивность

Радиоактивность

Атомные ядра которые нестабильны, имеют тенденцию приближаться к стабильной конфигурации (ях) в процессе радиоактивность. Атомы радиоактивен, потому что соотношение нейтронов и протонов неидеально. Через При радиоактивном распаде ядро ​​приближается к более стабильному отношению нейтронов к протонам .При радиоактивном распаде выделяются различные типы энергетических выбросов. Три наиболее распространенными типами радиоактивных выбросов являются альфа-частицы, бета-частицы, и гамма-лучи. Деление также является формой радиоактивный распад .

Альфа (а) Распад происходит, когда отношение нейтронов к протонам слишком низкое. Альфа-распад испускает альфа-частицу, которая состоит из двух протонов и двух нейтроны. Это то же самое, что и гелий ядро и часто использует тот же химический символ 4 He 2 .Альфа-частицы обладают высокой ионизацией (например, выделяют энергию за короткое время). расстояние). Поскольку альфа-частицы теряют энергию на коротком расстоянии, они не могут путешествуют далеко в большинстве средств массовой информации. Например, диапазон альфа-частицы 5 МэВ в воздух всего 3,5 см. Следовательно, альфа-частицы обычно не проникают самый внешний слой кожи. Следовательно, альфа-частицы не представляют собой ничего внешнего. радиационная полевая опасность. Экранирование альфа-частиц легко достигается с помощью минимальное экранирование. Примеры радионуклидов, излучающих альфа-частицы включают 238 U, 239 Pu и 241 Am.

238 U 92 234 Th 90 + 4 He 2 .

239 Pu 94 235 U 92 + 4 He 2 .

241 Am 95 237 НП 93 + 4 He 2 .

После выброса частица, остающийся дочерний продукт, будет уменьшена на 4 по своей массе номер и 2 в его атомном номере, что можно проверить в приведенных выше примерах.

Бета ) Распад происходит, когда отношение нейтронов к протонам слишком велико. Радиоактивное ядро ​​испускает бета-частицу, которая по сути представляет собой электрон , чтобы довести это до более благоприятного соотношения. Бета-частицы меньше ионизирующий, чем альфа-частицы. Диапазон бета-частиц зависит от энергии, а у некоторых достаточно, чтобы беспокоиться о внешнем воздействии. А 1 Бета-частица с МэВ может перемещаться по воздуху примерно на 12 футов.Энергетическая бета частицы могут проникать в организм и наносить дозу на внутренние структуры у поверхности. Поскольку бета-частицы менее ионизируют, чем альфа-частицы, требуется большее экранирование. Материалы с низким Z выбраны как бета-частицы. экраны для защиты от рентгеновского излучения, связанного с замедлением бета-излучения частицы, пока они путешествуют в среде.

В б эмиссии, отношение нейтронов к протонам уменьшается за счет преобразования нейтрона в протон как:

1 n 0 1 p 1 + е-. Выброшенный электрон — это высвобождающаяся частица b. Таким образом, b излучение приводит к увеличению числа протонов, то есть Z, на 1, но массовое число A не изменяется. Пример b распад: 40 K 19 40 Ca 20 + β -1

Гамма (г) лучей не являются излучением твердых частиц, как альфа и бета, но форма высокоэнергетического электромагнитного волна . Гамма-лучи являются наименее ионизирующими из трех обсуждаемых форм.А 1 Гамма-излучение с МэВ может проходить в воздухе в среднем 130 метров. Поскольку гамма-излучение может путешествовать далеко в воздухе, это представляет значительную внешнюю радиационную опасность. Кроме того, при проглатывании он может представлять опасность внутреннего излучения. Экранирование гамма-лучи обычно достигаются с материалами с высоким атомным числом, такими как привести. [Амма-лучи G — это электромагнитное излучение с более высокой энергией чем рентгеновские лучи. Рентгеновские лучи возникает, когда электроны атома прыгают с одной орбитальной позиции на другую.Гамма-лучи испускаются, когда атомное ядро ​​выделяет свою избыточную энергию. Из этого ясно, что ядерный переходы требуют гораздо больших энергий, чем атомные переходы . Другими словами, энергий ядерного происхождения много (10 3 10 6 ) раз больше, чем энергии атомного происхождения ].

Выбросы γ-лучи не меняют ни массовое число, ни атомный номер. Если атом находится в в возбужденном состоянии он переходит в стабильное состояние, испуская γ-излучение.

Обычно после при α- или β-распаде ядро ​​продукта образуется в возбужденном состоянии, и оно достигает стабильного состояния после γ-излучения.

Есть несколько других частиц, например нейтрон, протон, 3 He, дейтерий и т. д., которые могут высвобождаться в результате радиоактивности. Когда ядро ​​испускает такую ​​частицу (частицы) для достижения стабильной конфигурации, оно говорят, распадается. Испускаемая частица связанный с режимом разлагаться.Таким образом, у нас есть альфа-распад, бета-распад, гамма-распад, нейтронный распад, и т. д. В случае гамма-излучения, ядро изменяется только в своем энергетическом состоянии. Путем испускания частицы ядро превращается в другой, и, как говорят, трансмутируется или преобразован. Таким образом, происходит уменьшение исходного количества вещество во время распада. Нет фиксированного времени между двумя последовательными выбросов, но в среднем радиоактивный распад вещества происходит при скорость, которая пропорциональна количеству присутствующих атомов в данный момент времени.Это выражается в хорошо известном дифференциальном уравнении, называемом радиоактивностью. уравнение распада.

Атом становится радиоактивным, если страдает его ядро нестабильность, как было сказано ранее. Ядро может быть радиоактивным из-за нестабильности началось в то время, когда оно сформировалось в природе. Это называется натуральный радиоактивность , как и 238 U. Когда ядро потревоженный или возбужденный, скажем, бомбардировкой его частицами или гамма-лучами, его состояние стабильности изменится, и измененная система станет радиоактивный.Это называется наведенной радиоактивностью или искусственных радиоактивность . Там может быть много способов поместить ядро ​​в слегка или сильно нестабильную или возбужденное состояние. Но последующая радиоактивность, которая является процессом снятие возбуждения регулируется общими законами. Снятие возбуждения может иметь место быстро (скажем, в микросекундах) или в течение длительного периода (в миллионы лет), в один шаг или серию из многих шагов. Следовательно, когда мы говорим о радиоактивность вещества, мы говорим об исходном радиоактивном материале (родительский), какая часть конвертируется в единицу времени, каковы выпущенных (испускаемых) частиц, сколько энергии выделяется, что нового материалы (дочерние продукты) образовались, радиоактивные особенности дочерней продуктов, а также конечного продукта (стабильного).В Скорость распада называется активностью.

Скорость радиоактивного распада: ядра данного радиоактивного вещества имеют определенную вероятность распада в единицу времени; эта вероятность распада имеет постоянное значение, характерное для конкретного нуклида. Он остается неизменным независимо от химического или физического состояния элемент при всех легкодоступных температурах и давлениях. В для данного образца скорость распада в любой момент всегда прямо пропорциональна количеству радиоактивных атомов рассматриваемого нуклида, присутствующих в тот момент .Таким образом, если N — количество конкретного радиоактивного атомов (или ядер), присутствующих в любой момент времени t, скорость распада определяется как

dN / dt = — λt

где λ, называемая константой распада радиоактивного нуклида, является мерой вероятности его распада в единицах время. После интеграции между любым произвольным нулевым моментом времени, когда количество радиоактивных ядер указанным видом настоящего является N 0 , и время t позже, когда N из этих ядра остаются, радиоактивный распад рассматривается как экспоненциальный процесс, фактическая скорость распада определяется распадом постоянная λ и по количеству присутствующих конкретных ядер.

ln (N / N 0 ) = — λt,

N = N 0 e λt

Средний срок службы : Обратная величина постоянной распада, представленная t m , равна называется средней продолжительностью жизни (или средней продолжительностью жизни) радиоактивных видов; таким образом,

т м = 1/ λ

Средняя жизнь равна средней продолжительности жизни радиоактивных видов.

Период полураспада: Он определяется как времени, необходимое для количества радиоактивных ядра данного типа (или за их активность) распадаться до половины своего первоначального значение . Из-за экспоненциальный характер распада, на этот раз не зависит от количества радионуклид присутствует. Может быть Из приведенных выше уравнений видно, что период полураспада определяется выражением

t 1/2 = (ln 2) / λ = 0,6931 / λ

или

т 1/2 = 0.6931т м

Таким образом, период полураспада обратно пропорционален константе распада и прямо пропорционально средней жизни. В период полураспада известных радиоактивных нуклидов колеблется от небольшой доли, например, от одной миллионной секунды до миллиардов лет.

шт. для выражения выброса радиоактивности: Есть несколько разных единиц используется для описания излучения и его эффектов. Самый простой блок — это активность, которая измеряется числом распадов в секунду (dps). Один дпс означает, что радиоактивное ядро ​​испускает одну частицу или фотон в одна секунда. Этой единицей в международной системе единиц (СИ) является называется беккерелем (Бк), что эквивалентно 1 дпс. Другой блок Преобладающим для активности является Кюри (Ci). 1 Ки = 3,7 10 10 Бк. Эти единицы не различают альфа, бета и даже гамма. Эти единицы обеспечивают понимание «силы» радиоактивного образец, но не учитывают какие-либо свойства испускаемого излучения .Чтобы описать степень опасности для людей от конкретное излучение требует других единиц.

Уровни энергии: As упоминалось ранее, квантовая механика необходимо для понимания и количественной оценки атомных и субатомных свойств. В Квантовая теория признает ограничения в уровнях энергии, получаемой система. Электроны на своих орбитах или нуклоны в оболочках заполняется в соответствии с такими ограничениями. Энергия электрона зависит от его орбита, и только определенные орбиты разрешены по природе.Аналогично нуклоны внутри ядра занимают различные разрешенные энергетические состояния. Мы понять из этого, что электрон или нуклон не могут попасть ни в какую произвольную уровень энергии. Таким образом, когда система определена, разрешенные энергетические состояния получают указано. Они известны как дискретные уровни энергии. Переход от одного такого уровень до следующего более низкого уровня будет включать высвобождение энергии, которая точно соответствует разница между этими двумя уровнями и не может быть дробной частью одного и того же. В считается, что энергия квантована.Электронные орбиты, разрешенные для атома характерны для этого (разновидности) атома, и когда электрон выпрыгивает из одна орбита к нижней, рентгеновское излучение, называемое характеристическим рентгеновским излучением, с энергия, равная разнице между энергиями, связанными с двумя орбиты. Это помогает даже идентифицировать атом, от которого исходят рентгеновские лучи. выброшен. То же самое относится и к ядрам. Хотя внутри нет орбит ядро для движения нуклонов, у них есть свои энергетические состояния. А данное радиоактивное гамма-излучающее ядро ​​будет излучать гамма-лучи (называемые гамма-излучением). кванты), характерные для ядра.Энергии, принимаемые нуклонами внутри Невозбужденное ядро ​​называют связанными уровнями.

Аналогично, a ядро могло быть поднято (возбуждено) по своей внутренней энергии только до определенного допустимые уровни. Эти уровни называются возбужденными. уровни. Это варьируется от ядра к ядру, но фиксируется для данного ядро. Когда ядро ​​не возбуждено, говорят, что оно находится в основном состоянии. Разделение между двумя уровнями энергии уменьшается с увеличением энергии. Когда ядро ​​возбуждено до определенного уровня, оно сбивает с толку, чтобы достичь основное состояние путем испускания нейтрона, гамма-квантов или любой другой частицы.Деление также является таким процессом. Девозбуждение могло быть на одном этапе или в несколько этапов, включающих серию частиц выбросы или гамма, или и то, и другое.

Типы излучения — Ядерное излучение — Национальная версия 5 по физике

Три типа ионизирующего излучения:

Альфа-частица

Альфа-частица \ (\ alpha \) — это ядро ​​гелия, два протона и два нейтрона. Он имеет большую массу по сравнению с другими ионизирующими излучениями и сильный положительный заряд.

Бета-частица

Бета-частица \ (\ beta \) — это быстро движущийся электрон. Он имеет очень маленькую массу и отрицательный заряд.

Гамма-излучение

Гамма-излучение \ (\ gamma \) — это высокоэнергетическая электромагнитная волна. Гамма-лучи вызваны изменениями в ядре. Они являются частью электромагнитного спектра и поэтому движутся со скоростью света. У них нет массы и заряда.

Проникающая способность

Каждый тип излучения имеет разную способность проникать в материалы.Утверждается, что материал поглотил излучение.

Энергия трех излучений поглощается материалом, через который проходит излучение. Количество поглощаемой энергии зависит от типа излучения и типа поглощающего материала.

  • Диапазон альфа-излучения в поглощающем материале меньше, чем у бета- или гамма-излучения. Альфа-излучение передает поглотителю больше энергии, чем бета- или гамма-излучение. Альфа-излучение поглощается толщиной кожи или несколькими сантиметрами воздуха.
  • Бета-излучение более проникающее, чем альфа-излучение. Он может проходить через кожу, но впитывается несколькими сантиметрами тканей тела или несколькими миллиметрами алюминия.
  • Гамма-излучение является наиболее проникающим из трех излучений. Он может легко проникать в ткани тела. Для его поглощения требуется несколько сантиметров свинца или около 1 метра бетона.

Нет
В таблице ниже показаны свойства каждого типа ионизирующего излучения
Излучение Дальность действия (см) Ионизирующая сила Может проходить сквозь бумагу? Может проходить через 5 мм алюминия Может проходить через 5 см свинца? Отклонение электрического поля
Alpha 3-5 Сильно ионизирующий Нет Нет Нет Отклонено в сторону отрицательной пластины
Ионизирующий Да Нет Нет Отклонен в сторону положительной пластины
Гамма намного дольше Слабо ионизирующий Да Да

Каждый тип излучения вызван распадом (спонтанным — естественным — или индуцированным — реакцией, вызвавшей распад).

Ядра некоторых атомов нестабильны и, естественно, подвергаются «радиоактивному распаду». Это вызывает выброс ионизирующего излучения, которое позволяет ядру стать более стабильным.

Атомы, которые это делают, считаются радиоактивными.

Сравнение альфа, бета и гамма

Проникновение различных типов излучения

Школа готовности и экстренного реагирования при Университете CDC

Урок X: название урока здесь

РЕАГИРОВАНИЕ ОБЩЕСТВЕННОГО ЗДРАВООХРАНЕНИЯ НА РАДИОЛОГИЧЕСКИЕ И ЯДЕРНЫЕ УГРОЗЫ

Щелкните P, чтобы воспроизвести видео.

Альфа-частицы могут выбрасываться из ядра атома во время радиоактивного распада. Они есть относительно тяжелый, и перемещается по воздуху всего на дюйм. Альфа-частицы могут быть легко защищены один лист бумаги и не может проникнуть через внешний мертвый слой кожи, поэтому они не представляют опасности когда их источник находится вне человеческого тела.

Бета-частицы — это, по сути, электроны, испускаемые ядром радиоактивного атома.Они есть легче, чем альфа-частицы, и может перемещаться по воздуху на несколько ярдов. Очень энергичная бета частицы могут проникать через кожу в тело на расстояние до 0,5 дюйма. Их можно экранировать толщиной менее дюйма материала, например пластика. В случае бета-частиц с меньшей энергией внешний слой одежды может действовать как эффективный щит.

Гамма-лучи могут испускаться ядром атома во время радиоактивного распада.Они умеют путешествовать по воздуху на десятки и более ярдов и легко проникать в человеческое тело. Защищая это самое проникающего типа ионизирующего излучения требуется толстый, плотный материал, например, несколько дюймов свинца или конкретный.

Нейтроны могут высвобождаться из ядра атома во время реакции деления, например, внутри ядерный реактор, или при детонации ядерного оружия. Нейтроны, как и гамма-лучи, очень Для защиты от них требуется несколько футов бетона.

Проникающая способность различных типов излучения

CDC, «Как раз вовремя» обучающее видео по радиационной терапии для клиницистов больниц

Радиационные исследования — CDC: Свойства радиоактивных изотопов

Альфа-частицы — Ядро атома гелия, состоящее из двух нейтронов и двух протонов с зарядом +2. Некоторые радиоактивные ядра испускают альфа-частицы. Альфа-частицы обычно несут больше энергии, чем гамма- или бета-частицы, и очень быстро выделяют эту энергию, проходя через ткань.Альфа-частицы могут задерживаться тонким слоем легкого материала, например листом бумаги, и не могут проникнуть через внешний мертвый слой кожи. Следовательно, они не повреждают живые ткани вне тела. Однако, когда альфа-излучающие атомы вдыхаются или проглатываются, они особенно опасны, поскольку передают относительно большие количества ионизирующей энергии живым клеткам. См. Также бета-частицы, гамма-лучи, нейтроны, рентгеновские лучи.

Атом — Наименьшая частица элемента, способная вступать в химическую реакцию.

Бета-частицы — Электроны, выброшенные из ядра распадающегося атома. Хотя их можно остановить с помощью тонкого листа алюминия, бета-частицы могут проникать через мертвый слой кожи, потенциально вызывая ожоги. Они могут представлять серьезную прямую или внешнюю радиационную угрозу и могут быть смертельными в зависимости от полученного количества. Они также представляют серьезную внутреннюю радиационную угрозу при проглатывании или вдыхании бета-излучающих атомов. См. Также альфа-частицы, гамма-лучи, нейтроны, рентгеновские лучи.

Цепочка распада (серия распадов) — Серия распадов, через которые проходят определенные радиоизотопы, прежде чем они достигнут стабильной формы. Например, цепочка распада, которая начинается с урана-238 (U-238), заканчивается свинцом-206 (Pb-206) после образования изотопов, таких как уран-234 (U-234), торий-230 (Th-230). ), радий-226 (Ra-226) и радон-222 (Rn-222).

Гамма-лучи — Электромагнитное излучение высокой энергии, излучаемое некоторыми радионуклидами, когда их ядра переходят из состояния с более высокой энергией в состояние с более низкой энергией.Эти лучи обладают высокой энергией и короткой длиной волны. Все гамма-лучи, испускаемые данным изотопом, имеют одинаковую энергию, что позволяет ученым определять, какие гамма-излучатели присутствуют в образце. Гамма-лучи проникают в ткань дальше, чем бета- или альфа-частицы, но оставляют на своем пути более низкую концентрацию ионов, что потенциально может вызвать повреждение клеток. Гамма-лучи очень похожи на рентгеновские лучи. См. Также нейтрон.

Изотоп — нуклид элемента, имеющего такое же количество протонов, но другое количество нейтронов.

Нейтрон — небольшая атомная частица, не обладающая электрическим зарядом, обычно обнаруживаемая в ядре атома. Нейтроны, как следует из названия, нейтральны по своему заряду. То есть у них нет ни положительного, ни отрицательного заряда. Нейтрон имеет примерно такую ​​же массу, что и протон. См. Также альфа-частица, бета-частица, гамма-излучение, нуклон, рентгеновское излучение.

Радиоактивный распад — Распад ядра нестабильного атома под действием радиации.

Радиация — Энергия, движущаяся в форме частиц или волн. Знакомые виды излучения — это тепло, свет, радиоволны и микроволны. Ионизирующее излучение — это очень высокоэнергетическая форма электромагнитного излучения.

Радиоактивный материал — Материал, содержащий нестабильные (радиоактивные) атомы, которые при распаде испускают излучение.

Радионуклид — нестабильная и, следовательно, радиоактивная форма нуклида.

[В начало]

Радиоактивность: определение, типы и использование — видео и стенограмма урока

Alpha Particles

Подумайте о строительстве башни из блоков.С каждым блоком увеличивается вероятность падения башни. Он становится более опасным, и даже малейшая вибрация может отправить его на пол. Оказывается, атомы очень похожи на это. Атомы, в которых слишком много нейтронов или протонов, имеют тенденцию становиться нестабильными. Это позволяет им стать радиоактивными.

Стремясь стать более стабильным, атом выпускает два протона и два нейтрона, альфа-частицу . Альфа-частицы — самые большие продукты радиоактивности.Следовательно, они не проникают через многие препятствия, как другие виды излучения, что делает их наименее опасными для человека.

Однако это не значит, что люди не могут найти им применение. Одним из распространенных способов использования альфа-распада являются детекторы дыма, в которых используется радиоактивный элемент америций. В дымовом извещателе разделяются тонкие листы америция. При подключении к электросети через пластины проходит небольшой электрический ток, создавая ионы в воздухе за счет энергии, выделяемой альфа-частицами, что называется ионизацией.Если дым попадает в дымовой извещатель, он прерывает ток, останавливает ионизацию и срабатывает сигнализация.

Бета-частицы

Бета-частицы меньше альфа-частиц и могут проникать дальше, вплоть до толщины алюминиевой фольги. Во время бета-распада количество протонов изменяется за счет получения или потери протонов. Бета-частицы можно использовать в производстве продуктов или в медицине.

Представьте, что вам поставили диагноз «рак щитовидной железы».От рака бывает сложно избавиться, и в настоящее время лекарства от него нет, хотя врачи могут помочь вам справиться с болезнью. Если операция по удалению рака не увенчалась успехом, ваш врач может попробовать лучевую терапию . В этой терапии пациенту вводят изотоп йода, йод-131. Щитовидная железа использует йод для производства гормона щитовидной железы и преимущественно поглощается щитовидной железой. Бета-частицы и некоторые высокоэнергетические гамма-лучи повреждают щитовидную железу, поэтому они убивают там раковые клетки.

Хотя бета-частицы сильно отличаются от лечения рака щитовидной железы, они также используются для производства таких продуктов, как алюминиевая фольга. Отчасти полезность алюминиевой фольги заключается в том, что она такая тонкая и гибкая. Представьте, что вы пытаетесь обернуть остатки толстым и прочным листом фольги.

Во время производства бета-частицы выделяются возле алюминиевой фольги. Бета-частицы просто проникают сквозь алюминий. Поэтому ученые помещают счетчик Гейгера на противоположной стороне фольги, который измеряет радиацию.Когда счетчик Гейгера обнаруживает излучение бета-частиц, алюминиевая фольга становится достаточно тонкой.

Гамма-лучи

Гамма-лучи — это форма излучения, излучающая наибольшее количество энергии. Гамма-лучи чрезвычайно опасны для человека. Это не частицы, подобные альфа- или бета-излучению, а скорее энергия без массы. Они проникают сквозь толстые материалы, даже через бетон, и их можно остановить только с помощью сантиметров свинца или очень толстых бетонных плит глубиной в несколько метров.

Хотя гамма-лучи могут быть опасными, они могут быть важны для нашего здоровья. Медицинское сканирование полагается на гамма-лучи для диагностики определенных состояний, таких как рак, болезни сердца и болезни мозга.

Небольшие количества радиоактивных соединений могут быть введены для визуализации тела в процессе, называемом позитронно-эмиссионная томография (ПЭТ) . Во время этой процедуры вводится радиоактивное соединение, которое ненадолго накапливается в органах. Специальные аппараты для визуализации улавливают излучаемый свет в виде гамма-лучей и могут получить полную картину органа-мишени.Эти соединения недолговечны, а это означает, что гамма-излучение перестает быстро испускаться, не позволяя причинить вред нашему телу. Однако опасно любое излучение, особенно гамма-излучение. Сканирование с использованием излучения должно быть ограничено на протяжении всей жизни пациента, и беременным женщинам не следует проходить это сканирование.

Гамма-лучи также могут быть использованы для преднамеренного повреждения наших тканей. Это может показаться нелогичным, но одним из основных методов лечения рака является лучевая терапия.Как и бета-частицы, гамма-лучи могут быть нацелены на область рака, чтобы убить раковые клетки. Поскольку гамма-лучи неспецифичны, многие другие клетки также повреждаются, что приводит к таким симптомам, как проблемы с пищеварением, выпадение волос и анемия.

Наша свежая здоровая пища на самом деле также является продуктом гамма-излучения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *