Вопросы и ответы

Три вида радиоактивных лучей – 5 Виды радиоактивных излучений и их характеристика

5 Виды радиоактивных излучений и их характеристика

Радиоактивность была открыта в 1896 г. французским ученым Антуаном Анри Беккерелем при изучении люминесценции солей урана. Оказалось, что урановые соли без внешнего воздействия (самопроизвольно) испускали излучение неизвестной природы, которое засвечивало изолированные от света фотопластинки, ионизовало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Таким же свойством обладали и вещества содержащие полоний 21084Ро и радий 226 88Ra.

Еще раньше, в 1985 г. были случайно открыты рентгеновские лучи немецким физиком Вильгельмом Рентгеном. Мария Кюри ввела в употребление слово «радиоактивность».

Радиоактивность – это самопроизвольное превращение (распад) ядра атома химического элемента, приводящее к изменению его атомного номера или изменению массового числа. При таком превращении ядра происходит испускание радиоактивных излучений.

Различаются естественная и искусственная радиоактивности. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

Существует несколько видов радиоактивного излучения, отличающихся по энергии и проникающей способности, которые оказывают неодинаковое воздействие на ткани живого организма.

Альфа-излучение — это поток положительно заряженных частиц, каждая из которых состоит из двух протонов и двух нейтронов. Проникающая способность этого вида излучения невелика. Оно задерживается несколькими сантиметрами воздуха, несколькими листами бумаги, обычной одеждой. Альфа-излучение может быть опасно для глаз. Оно практически не способно проникнуть через наружный слой кожи и не представляет опасности до тех пор, пока радионуклиды, испускающие альфа-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом — тогда они могут стать чрезвычайно опасными. В результате облучения относительно тяжелыми положительно заряженными альфа-частицами через определенное время могут возникнуть серьезные повреждения клеток и тканей живых организмов.

Бета-излучение — это поток движущихся с огромной скоростью отрицательно заряженных электронов, размеры и масса которых значительно меньше, чем альфа-частиц. Это излучение обладает большей проникающей способностью по сравнению с альфа-излучением. От него можно защититься тонким листом металла типа алюминия или слоем дерева толщиной 1.25 см. Если на человеке нет плотной одежды, бета-частицы могут проникнуть через кожу на глубину несколько миллиметров. Если тело не прикрыто одеждой, бета-излучение может повредить кожу, оно проходит в ткани организма на глубину 1‑2 сантиметра.

Гамма-излучение, подобно рентгеновским лучам, представляет собой электромагнитное излучение сверхвысоких энергий. Это излучение очень малых длин волн и очень высоких частот. С рентгеновскими лучами знаком каждый, кто проходил медицинское обследование. Гамма-излучение обладает высокой проникающей способностью, защититься от него можно лишь толстым слоем свинца или бетона. Рентгеновские и гамма-лучи не несут электрического заряда. Они могут повредить любые органы.

Все виды радиоактивного излучения нельзя увидеть, почувствовать или услышать. Радиация не имеет ни цвета, ни вкуса, ни запаха. Скорость распада радионуклидов практически нельзя изменить известными химическими, физическими, биологическими и другими способами. Чем больше энергии передаст излучение тканям, тем больше повреждений вызовет оно в организме. Количество переданной организму энергии называется дозой. Дозу облучения организм может получить от любого вида излучения, в том числе и радиоактивного. При этом радионуклиды могут находиться вне организма или внутри его. Количество энергии излучения, которое поглощается единицей массы облучаемого тела, называется поглощенной дозой и измеряется в системе СИ в грэях (Гр).

При одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета- и гамма-излучений. Степень воздействия различных видов излучения на человека оценивают с помощью такой характеристики как эквивалентная доза. разному повреждать ткани организма. В системе СИ ее измеряют в единицах, называемых зивертами (Зв).

Радиоактивным распадом называется естественное радиоактивное превращение ядер, происходящее самопроизвольно. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием γ-фотона. Т.о. гамма-излучение — основная форма уменьшения энергии возбужденных продуктов радиоактивных превращений.

Альфа-распад. β-лучи представляют собой поток ядер гелия Не. Альфа-распад сопровождается вылетом из ядра α-частицы (Не), при этом первоначально превращается в ядро атома нового химического элемента, заряд которого меньше на 2, а массовое число – на 4 единицы.

Скорости, с которыми α-частицы (т.е. ядра Не) вылетают из распавшегося ядра, очень велики (~106 м/с).

Пролетая через вещество, α-частица постепенно теряет свою энергию, затрачивая ее на ионизацию молекул вещества, и, в конце концов, останавливается. α-частица образует на своем пути примерно 106 пар ионов на 1 см пути.

Чем больше плотность вещества, тем меньше пробег α-частиц до остановки. В воздухе при нормальном давлении пробег составляет несколько см, в воде, в тканях человека (мышцы, кровь, лимфа) 0,1-0,15 мм. α-частицы полностью задерживаются обычным листком бумаги.

α- частицы не очень опасны в случае внешнего облучения, т.к. могут задерживаться одеждой, резиной. Но α-частицы очень опасны при попадании внутрь человеческого организма, из-за большой плотности производимой имим ионизации. Повреждения, возникающие в тканях не обратимы.

Бета-распад бывает трех разновидностей. Первый – ядро, претерпевшее превращение, испускает электрон, второе – позитрон, третье – называется электронный захват (е-захват), ядро поглощает один из электронов.

Третий вид распада (электронный захват) заключается в том, что ядро поглощает один из электронов своего атома, в результате чего один из протонов превращается в нейтрон, испуская при этом нейтрино:

Скорость движения β-частиц в вакууме равна 0,3 – 0,99 скорости света. Они быстрее чем α-частицы, пролетают через встречные атомы и взаимодействуют с ними. β–частицы обладают меньшим эффектом ионизации (50-100 пар ионов на 1 см пути в воздухе) и при попадании β-частицы внутрь организма они менее опасны чем α-частицы. Однако проникающая способность β-частиц велика (от 10 см до 25 м и до 17,5 мм в биологических тканях).

Гамма-излучение – электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях, которое распространяется в вакууме с постоянной скоростью 300 000 км/с. Это излучение сопровождает, как правило, β-распад и реже – α-распад.

γ-излучение подобно рентгеновскому, но обладает значительно большей энергией (при меньшей длине волны). γ–лучи, являясь электрически нейтральными, не отклоняются в магнитном и электрическом полях. В веществе и вакууме они распространяются прямолинейно и равномерно во все стороны от источника, не вызывая прямой ионизации, при движении в среде они выбивают электроны, передавая им часть или всю свою энергию, которые производят процесс ионизации. На 1см пробега γ-лучи образуют 1-2 пары ионов. В воздухе они проходят путь от нескольких сот метров и даже километров, в бетоне – 25 см, в свинце – до 5 см, в воде – десятки метров, а живые организмы пронизывают насквозь.

γ-лучи представляют значительную опасность для живых организмов как источник внешнего облучения.

studfiles.net

Радиоактивность. Виды радиоактивных излучений. Закон радиоактивного распада.

Естественной радиоактивностью называется самопроизвольное превращение атомных ядер одного химического элемента в ядра атомов другого химического элемента, сопровождаемое радиоактивным излучением.
Открытие явления — 1896 г. французский ученый Анри Беккерель при постановке опытов с солями урана.
Без каких-либо внешних влияний на уран А. Беккерелем было зарегистрировано неизвестное излучение.
В 1898 г. М. Склодовская — Кюри обнаружила излучение тория, а также открыла новые радиоактивные химические элементы полоний и радий.
Все химические элементы с порядковым номером более 83 являются радиоактивными.

Естественная радиоактивность химических элементов не зависит от внешних условий.

Три вида радиоактивного излучения.
В 1899 г. Э. Резерфорд обнаружил, что радиоактивное излучение состоит из двух компонентов, которые он назвал «альфа-лучи» и «бета-лучи».
В 1900г. французский физик Ф. Вилард установил, что в состав излучения входят еще и гамма-лучи.

Опыт Резерфорда


Поведение радиоактивного излучения было изучено в магнитном поле. Радиоактивный элемент был помещен в узкий свинцовый стакан, напротив которого размещалась фотопластинка. Вся установка размещалась в вакууме.
В отсутствие магнитного поля на фотопластинке было обнаружено в центре одно пятно засветки от излучения.
В магнитном поле пучок излучения распался на три. Составляющие отклонялись в противоположные стороны: пятно на фотопластинке посередине оставляла составляющая, не имеющая заряда, две другие составляющие радиоактивного излучения отклонялись в противоположные стороны, что доказывало присутствие заряженных частиц в излучении.

В результате опыта Э.Резерфорд доказал, что радиоактивное излучение является неоднородным.

Свойства радиоактивных лучей

Альфа-излучение (альфа — лучи) — это поток полностью ионизированных ядер атомов гелия,
распространяющихся с начальной скоростью около 20 тыс. км/с.

Их ионизирующая способность огромна, а так как на каждый акт ионизации тратится определенная энергия, то их проникающая способность незначительна: длина пробега в воздухе составляет 3—11 см, а в жидких и твердых средах — сотые доли миллиметра. Лист плотной бумаги полностью задерживает их. Надежной защитой от альфа-частиц является также одежда человека.

Поскольку альфа-излучение имеет наибольшую ионизирующую, но наименьшую проникающую способность, внешнее облучение альфа-частицами практически безвредно, но попадание их внутрь организма весьма опасно.

Бета-излучение (бета-лучи) — это поток электронов, которые в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света (300 тыс. км/с). Заряд бета-частиц меньше, а скорость больше, чем у альфа-частиц, поэтому они имеют меньшую ионизирующую, но большую проникающую способность. Длина пробега бета-частиц с высокой энергией составляет в воздухе до 20 м, воде и живых тканях — до 3 см, металле — до 1 см. На практике бета-частицы почти полностью поглощают оконные или автомобильные стекла и металлические экраны толщиной в не сколько миллиметров. Одежда поглощает до 50 % бета-частиц.

 Гамма-излучение — это электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. Оно, как правило, сопровождает бета-распад, реже альфа-распад. По своей природе гамма-излучение представляет собой электромагнитное поле с длиной волны 10~8—10~и см. Оно испускается отдельными порциями (квантами) и распространяется со скоростью света. Ионизирующая способность его значительно меньше, чем у бета-частиц и тем более у альфа-частиц.

Зато гамма-излучение имеет наибольшую проникающую способность и в воздухе может распространяться на сотни метров. Для ослабления его энергии в два раза необходим слой вещества (слой половинного ослабления) толщиной: воды — 23 см, стали — около 3, бетона — 10, дерева — 30 см.

Из-за наибольшей проникающей способности гамма-излучение является важнейшим фактором поражающего действия радиоактивных излучений при внешнем облучении.

Хорошей защитой от гамма-излучений являются тяжелые металлы, например свинец, который для этих целей используется наиболее часто.

Закон радиоактивного распада установлен Ф. Содди.

Опытным путем Э. Резерфорд установил, что активность радиоактивного распада убывает с течением времени.

Используя закон радиоактивного распада, можно определить число нераспавшихся атомов какого-то количества радиоактивного вещества в любой момент времени:


Время, за которое распадается половина первоначального числа радиоактивных ядер, называется периодом полураспада (Т).
Чем меньше период полураспада, тем меньше живут атомы, тем быстрее происходит распад.
Для разных химических элементов величина периода полураспада различна : от миллионных долей секунд (например, полоний)до миллиардов лет (например, уран).

……
Период полураспада — это постоянная величина для данного химического элемента, и ее невозможно изменить.
Период полураспада определяет скорость радиоактивного распада.

2 Магнитные свойства вещества.

Вещества бывают парамагнитными, ферромагнитные и диамагнитные.

Парамагнитные— вещества, магнитная проницаемость которых немного больше, чем у вакуума. Попадая в магнитное поле, они немного усиливают его за счет своего магнетизма. Ферромагнитные- вещества, магнитная проницаемость которых во много раз больше, чем у вакуума. Попадая в магнитное поле, они намагничиваются и значительно усиливают его за счет своего магнетизма. Диамагнитные— вещества, магнитная проницаемость которых меньше, чем у вакуума. Они ослабляют магнитное поле, в которое попали. Магнитное поле внутри диамагнитного вещества меньше, чем снаружи.

Ферромагнетики.

Ферромагнетики- вещества, магнитная проницаемость которых во много раз больше, чем у вакуума. Их применяют для получения сильного магнитного поля. Попадая в магнитное поле, они намагничиваются и значительно усиливают его за счет своего магнетизма. В их атомах есть электроны, которые, двигаясь по орбитам вокруг ядер, совершают вращение вокруг своей оси. Магнитные поля таких электронов очень сильные и так расположены в пространстве, что при наложении усиливают друг друга. Внешнее магнитное поле у полюсов ферромагнетиков велико, так как велико и внутреннее

Температура Кюри при температуре, большей некоторой определённой для данного ферромагнетика, ферромагнитные свойства его исчезают. Эту температуру называют температурой Кюри по имени открывшего это явление французского учёного. Если сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Для железа-7530С, никель 3630С, кобальт 10000С. существуютт ферромагнитные сплавы, у которых температура Кюри меньше 100 0C

Билет 24.
1.Деление ядер урана. Цепная ядерная реакция. Ядерная энергетика. Термоядерные реакции.

Деление ядер урана происходит следующим образом: вначале в ядро попадает нейтрон, словно пуля в яблоко. В случае с яблоком пуля проделала бы в нем дыру, либо разнесла бы на куски. Когда же нейтрон попадает в ядро, то он захватывается ядерными силами. Нейтрон, как известно нейтрален, поэтому он не отталкивается электростатическими силами.

Итак, попав в состав ядра, нейтрон нарушает равновесие, и ядро возбуждается. Оно растягивается в стороны подобно гантели или знаку «бесконечность»: . Ядерные силы, как известно, действуют на расстоянии, соизмеримом с размерами частиц. Когда ядро растягивается, то действие ядерных сил становится несущественным для крайних частиц «гантели», в то время как электрические силы действуют на таком расстоянии очень мощно, и ядро попросту разрывается на две части. При этом еще излучается два-три нейтрона.

Осколки ядра и выделившиеся нейтроны разлетаются на огромной скорости в разные стороны.

Осколки довольно быстро тормозятся окружающей средой, однако их кинетическая энергия огромна. Она преобразуется во внутреннюю энергию среды, которая нагревается. При этом величина выделяющейся энергии огромна. Энергия, полученная при полном делении одного грамма урана примерно равна энергии, получаемой от сжигания 2,5 тонн нефти.

При делении выделилось несколько (чаще всего два-три) нейтронов. Они на огромной скорости разлетаются в стороны и могут запросто попасть в ядра других атомов, вызвав в них реакцию деления. Это и есть цепная реакция.

То есть полученные в результате деления ядра нейтроны возбуждают и принуждают делиться другие ядра, которые в свою очередь сами излучают нейтроны, которые продолжают стимулировать деление дальше. И так до тех пор, пока не произойдет деление всех ядер урана в непосредственной близости.

При этом цепная реакция может происходить лавинообразно, например, в случае взрыва атомной бомбы. Количество делений ядер увеличивается в геометрической прогрессии за короткий промежуток времени. Однако цепная реакция может происходить и с затуханием.

Дело в том, что не все нейтроны встречают на своем пути ядра, которые они побуждают делиться. Как мы помним, внутри вещества основной объем занимает пустота между частицами. Поэтому некоторые нейтроны пролетают все вещество насквозь, не столкнувшись по пути ни с чем. И если количество делений ядер уменьшается со временем, то реакция постепенно затухает.

Чем больше масса – тем больше частиц встретит на своем пути летящий нейтрон и шансов попасть в ядро у него больше. Поэтому различают «критическую массу» урана – это такая минимальная масса, при которой возможно протекание цепной реакции.

Количество образовавшихся нейтронов будет равно количеству улетевших вовне нейтронов. И реакция будет протекать с примерно одинаковой скоростью, пока не выработается весь объем вещества. Это используют на практике на атомных электростанциях и называют управляемой ядерной реакцией

Первая управляемая цепная реакция — США в 1942 г. (Э.Ферми)
В СССР — 1946 г. (И.В.Курчатов).

ЯДЕРНЫЙ РЕАКТОР— это устройство на атомной электростанции для получения атомной энергии.
Назначение ядерного реактора: преобразование внутренней энергии атомного ядра в электрическую энергию.
В ядерном реакторе осуществляется управляемая цепная реакция деления ядер (при k = 1).
Ядерными реакторами оснащены все АЭС (атомные электростанции)

Реактор работает на медленных нейтронах (более эффективно идет деление ядер урана-235).
Активная зона реактора, содержит ядерное топливо — урановые стержни и замедлитель — воду. Вода вокруг урановых стержней является не только замедлителем нейтронов, но и служит для отвода тепла, т.к. внутренняя энергия разлетающихся осколков переходит во внутреннюю энергию окружающей среды — воды. Активная зона окружена отражателем для возвращения нейтронов и защитным слоем бетона.
Достижение критической массы топлива осуществляется введением регулирующих стержней (до достижения массы урана = критической массе).
Первая АЭС была построена в г. Обнинске (СССР).
Преимущества АЭС:
— ядерные реакторы не потребляют кислород и органическое топливо
— не загрязняют окружающую среду золой и вредными для человека продуктами органического топлива
— биосфера надежно защищена от радиоактивного воздействия при нормальном режиме эксплуатации АЭС.
Недостатки АЭС:
— необходимость захоронения радиоактивных отходов и демонтаж отслуживших свой срок реакторов
— опасность радиоактивного заражения местности при аварийных выбросах
— опасность экологических катастроф ((1986 г. — Чернобыльская АЭС).

 

В термоядерную реакцию вступают легкие ядра, а в результате синтеза (слияния) они образуют более тяжелое ядро.
Такие термоядерные реакции при температурах в миллионы градусов идут в недрах Солнца, где ядра изотопов водорода, сливаясь вместе, образуют более тяжелое ядро атома гелия, при этом выделяется огромная энергия.

Ядерный реакция, происходящая в разогретом веществе называется термоядерной реакцией (синтезом).

2.Состав белого света. Световая сигнализация. Цвет на ж/д транспорте.

Спектр белого света состоит из электромагнитных волн, имеющих длину от 350 (фиолетовый) до 760 нм (красный).Белый свет – сложный, он состоит из 7 основных цветов:

studopedia.net

Высокая радиация и её влияние на человека. Нормы и виды радиации

Содержание статьи:

Радиация представляет собой ионизирующее излучение, наносящее непоправимый вред всему окружающему. Страдают люди, животные, растения. Самая большая опасность заключается в том, что она не видима человеческим глазом, поэтому важно знать об ее главных свойствах и воздействии, чтобы защититься.

Радиация сопровождает людей всю жизнь. Она встречается в окружающей среде, а также внутри каждого из нас. Огромнейшее воздействие несут внешние источники. Многие наслышаны об аварии на Чернобыльской АЭС, последствия которой до сих пор встречаются в нашей жизни. Люди оказались не готовы к такой встрече. Это лишний раз подтверждает, что в мире есть события неподвластные человечеству.

Виды радиации

Не все химические вещества устойчивы. В природе существуют определенные элементы, ядра которых трансформируются, распадаясь на отдельные частички с выделением огромного количества энергии. Это свойство называется радиоактивностью. Ученые в результате исследований обнаружили несколько разновидностей излучения:

  1. Альфа излучение — это поток тяжелых радиоактивных частиц в виде ядер гелия, способных нанести наибольший вред окружающим. К счастью, им свойственна низкая проникающая способность. В воздушном пространстве они распространяются всего на пару сантиметров. В ткани их пробег составляет доли миллиметра. Таким образом, внешнее излучение не несет опасности. Можно защититься, используя плотную одежду или лист бумаги. А вот внутреннее облучение – внушительная угроза.
  2. Бета излучение – поток легких частичек, перемещающихся в воздухе на пару метров. Это электроны и позитроны, проникающие в ткань на два сантиметра. Оно несет вред при соприкосновении с кожей человека. Однако большую опасность дает при воздействии изнутри, но меньшую, чем альфа. Для предохранения от влияния этих частиц, используются специальные контейнеры, защитные экраны, определенное расстояние.
  3. Гамма и рентгеновское излучение – это электромагнитные излучения, пронизывающие тело насквозь. Защитные средства от такого воздействия включает создание экранов из свинца, возведение бетонных конструкций. Наиболее опасное из облучений при внешнем поражении, так как оказывает влияние весь на организм.
  4. Нейтронное излучение состоит из потока нейтронов, обладающих более высоким показателем проникающей способности, чем гамма. Образуется в результате ядерных реакций, протекающих в реакторах и специальных исследовательских установках. Появляется во время ядерных взрывов и находится в отходах утилизированного топлива от ядерных реакторов. Броня от такого воздействия создается из свинца, железа, бетона.

Источники радиации

Всю радиоактивность на Земле можно поделить на два основных вида: естественную и искусственную. К первой относятся излучения из космоса, почвы, газов. Искусственная же появилась благодаря человеку при использовании атомных электростанций, различного оборудования в медицине, ядерных предприятий.

Источники радиации

Естественные источники

Радиоактивность естественного происхождения всегда находилась на планете. Излучение присутствует во всем, что окружает человечество: животные, растения, почва, воздух, вода. Считается, что этот небольшой уровень радиации, не оказывает вредного воздействия. Хотя, некоторые ученые придерживаются иного мнения. Так как люди не имеют возможности повлиять на эту опасность, следует избегать обстоятельств, увеличивающих допустимые значения.

Разновидности источников естественного происхождения

  1. Космическое излучение и солнечная радиация — мощнейшие источники, способными ликвидировать все живое на Земле. К счастью, планета защищена от этого воздействия атмосферой. Однако люди постарались исправить это положение, развивая деятельность, приводящую к образованию озоновых дыр. Не стоит надолго попадать под прямые солнечные лучи.
  2. Излучение земной коры опасно вблизи месторождений различных минералов. Сжигая уголь или используя фосфорные удобрения, радионуклиды активно просачиваются внутрь человека с вдыхаемым воздухом и употребляемой им едой.
  3. Радон – это радиоактивный химический элемент, присутствующий в строительных материалах. Представляет собой бесцветный газ без запаха и вкуса. Этот элемент активно накапливается в почвах и выходит наружу вместе с добычей полезных ископаемых. В квартиры он попадает вместе с бытовым газом, а также с водопроводной водой. К счастью, его концентрацию легко уменьшить, постоянно проветривая помещения.

Искусственные источники

Данный вид появился благодаря людям. Его действие увеличивается и распространяется с их помощью. Во время начала ядерной войны не так страшна сила и мощность оружия, как последствия радиоактивного излучения после взрывов. Даже если вас не зацепит взрывная волна или физические факторы — вас добьет радиация.

Взрыв атомной бомбы

К искусственным источникам относятся:

  • Ядерное оружие;
  • АЭС;
  • Медицинское оборудование;
  • Отходы с предприятий;
  • Определенные драгоценные камни;
  • Некоторые старинные предметы, вывезенные из опасных зон. В том числе из Чернобыля.

Норма радиоактивного излучения

Ученым удалось установить, что радиация по-разному оказывает влияние на отдельные органы и весь организм в целом. Для того чтобы оценить ущерб, возникающий при хроническом облучении ввели понятие эквивалентной дозы. Она рассчитывается по формуле и равна произведению полученной дозы, поглощенной организмом и усредненной по конкретному органу или всему организму человека, на весовой множитель.

Единицей измерения эквивалентной дозы есть соотношение Джоуля к килограммам, которое получило название – зиверт (Зв). С её использованием была создана шкала, позволяющая понять о конкретной опасности излучения для человечества:

  • 100 Зв. Моментальная смерть. У пострадавшего есть несколько часов, максимум пару дней.
  • От 10 до 50 Зв. Получивший повреждения такого характера погибнет через несколько недель от сильного внутреннего кровотечения.
  • 4-5 Зв. При попадании данного количества, организм справляется в 50% случаев. В остальном печальные последствия приводят к смерти спустя пару месяцев из-за повреждений костного мозга и нарушения кровообращения.
  • 1 Зв. При поглощении такой дозы лучевая болезнь неизбежна.
  • 0,75 Зв. Изменения в системе кровообращения на небольшой промежуток времени.
  • 0,5 Зв. Данного количества достаточно, чтобы у больного развились онкологические заболевания. Остальные симптомы отсутствуют.
  • 0,3 Зв. Такое значение присуще аппарату для проведения рентгена желудка.
  • 0,2 Зв. Допустимый уровень для работы с радиоактивными материалами.
  • 0,1 Зв. При таком количестве происходит добыча урана.
  • 0,05 Зв. Данное значение – норма облучения медицинских аппаратов.
  • 0,0005 Зв. Допустимое количество уровня радиации около АЭС. Также это значение годового облучения населения, которое приравнивается к норме.

К безопасной дозе радиации для человека относится значения до 0,0003-0,0005 Зв в час. Предельно допустимым считается облучение в 0,01 Зв в час, если такое воздействие непродолжительно.

Влияние радиации на человека

Радиоактивность оказывает огромное влияние на население. Вредному воздействию подвергаются не только люди, столкнувшиеся лицом к лицу с опасностью, но и последующее поколение. Такие обстоятельства вызваны действием радиации на генетическом уровне. Различают два вида влияния:

  • Соматический. Заболевания возникают у пострадавшего, получившего дозу радиации. Приводит к появлению лучевой болезни, лейкозу, опухоли разнообразных органов, локальные лучевые поражения.
  • Генетический. Связан с дефектом генетического аппарата. Проявляется в последующих поколениях. Страдают дети, внуки и более далекие потомки. Возникают генные мутации и хромосомные изменения

Помимо отрицательного воздействия, есть и благоприятный момент. Благодаря изучению радиации, ученым удалось создать на ее основе медицинское обследование, позволяющее спасать жизни.

Мутация после радиации

Последствия облучения

При получении хронического облучения в организме происходят восстановительные мероприятия. Это приводит к тому, что пострадавший приобретает меньшую нагрузку, чем получил бы при разовом проникновении одинакового количества радиации. Радионуклиды размещаются внутри человека неравномерно. Чаще всего страдают: дыхательная система, пищеварительные органы, печень, щитовидка.

Враг не дремлет даже спустя 4-10 лет после облучения. Внутри человека может развиться рак крови. Особую опасность он представляет у подростков, не достигших 15 лет. Замечено, что смертность людей, работающих с оборудованием для проведения рентгена, увеличена из-за лейкоза.

Самым частым результатом облучения проявляется лучевая болезнь, возникающая как при однократном получении дозы, так и при длительном. При большом количестве радионуклидов приводит к смерти. Распространен рак молочной и щитовидной желез.

Страдает огромное количество органов. Нарушается зрение и психическое состояние потерпевшего. У шахтеров, участвующих в добыче урана, часто встречается рак легких. Внешние облучения вызывают страшные ожоги кожных и слизистых покровов.

Мутации

После воздействия радионуклидов возможно проявление двух типов мутаций: доминантной и рецессивной. Первая возникает сразу же после облучения. Второй тип обнаруживается спустя большой промежуток времени не у пострадавшего, а у его последующего поколения. Нарушения, вызванные мутацией, приводят к отклонениям в развитии внутренних органов у плода, внешним уродствам и изменением психики.

К сожалению, мутации достаточно плохо изучены, так как обычно проявляются не сразу. Спустя время сложно понять, что именно оказало главенствующее влияние на её возникновение.

toxiny.ru

Радиоактивность. Виды радиоактивного излучения.

Радиоактивность – свойство ядер определенных элементов самопроизвольно (т.е. без каких-либо внешних воздействий) превращаться в ядра других элементов с испусканием особого излучения, называемого радиоактивным излучением. Само явление называется радиоактивным распадом. Радиоактивный распад сопровождается небольшим выделением теплоты. Радиоактивные явления, происходящие у встречающихся в природе изотопов, называют естественной радиоактивностью, а происходящие в искусственно созданных изотопах – искусственной радиоактивностью. Под общим названием радиоактивного излучения объединяются три вида излучений , различные по природе, но имеющие некоторые общие свойства.

Альфа – излучение – это поток — частиц с высокой кинетической энергией, которое представляют ядра гелия. Альфа – частица состоит из двух протонов и

двух нейтронов и обозначается .

Бета-излучение — это поток -частиц с высокой кинетической энергией, которые представляют или электроны (у большинства радиоактивных элементов), или позитроны (у некоторых искусственно полученных изотопов)

Бета – частица обозначается или e (электрон) и или e (позитрон).

Гамма – излучение имеет электромагнитную природу и представляет поток фотонов с высокой энергией порядка от 1 до 2-3 МэВ и соответственно малой длиной волны (0,1 нм и меньше).

Характеристиками радиоактивного излучения являются масса и заряд частиц, скорость их при выбрасывании из ядра и соответствующая ей кинетическая энергия, а также распределение частиц по энергиям, называемое спектром радиоактивного излучения. В одном акте распада из ядер данного вещества выбрасываются частицы только одного вида: альфа- или бета-. Соответственно различают три основных вида распада радиоактивных ядер: — распад, — электронный и — позитронный. Любой из этих распадов может сопровождаться излучением — фотонов.


Похожие статьи:

poznayka.org

Радиоактивность

Почти 90 % из 2500 известных атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью. У больших ядер нестабильность возникает вследствие конкуренции между притяжением нуклонов ядерными силами и кулоновским отталкиванием протонов. Стабильных ядер с зарядовым числом Z > 83 и массовым числом A > 209 не существует. Но радиоактивными могут оказаться и ядра атомов с существенно меньшими значениями чисел Z и A. Если ядро содержит значительно больше протонов, чем нейтронов, то нестабильность обуславливается избытком энергии кулоновского взаимодействия. Ядра, которые содержат избыток нейтронов, оказываются нестабильными вследствие того, что масса нейтрона превышает массу протона. Увеличение массы ядра приводит к увеличению его энергии.

Явление радиоактивности было открыто в 1896 году французским физиком А. Беккерелем, который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года французские физики М. и П. Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний  и радий .

В последующие годы исследованием природы радиоактивных излучений занимались многие физики, в том числе Э. Резерфорд и его ученики. Было выяснено, что радиоактивные ядра могут испускать частицы трех видов: положительно и отрицательно заряженные и нейтральные. Эти три вида излучений были названы α-, β- и γ-излучениями. На рис. 6.7.1 изображена схема эксперимента, позволяющая обнаружить сложный состав радиоактивного излучения. В магнитном поле α- и β-лучи испытывают отклонения в противоположные стороны, причем β-лучи отклоняются значительно больше. γ-лучи в магнитном поле вообще не отклоняются.

Рисунок 6.7.1.

Схема опыта по обнаружению α-, β- и γ-излучений. К – свинцовый контейнер, П – радиоактивный препарат, Ф – фотопластинка,  – магнитное поле

Эти три вида радиоактивных излучений сильно отличаются друг от друга по способности ионизировать атомы вещества и, следовательно, по проникающей способности. Наименьшей проникающей способностью обладает α-излучение. В воздухе при нормальных условиях α-лучи проходят путь в несколько сантиметров. β-лучи гораздо меньше поглощаются веществом. Они способны пройти через слой алюминия толщиной в несколько миллиметров. Наибольшей проникающей способностью обладают γ-лучи, способные проходить через слой свинца толщиной 5–10 см.

Во втором десятилетии XX века, после открытия Э. Резерфордом ядерного строения атомов было твердо установлено, что радиоактивность – это свойство атомных ядер. Исследования показали, что α-лучи представляют поток α-частиц – ядер гелия , β-лучи – это поток электронов, γ-лучи представляют собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны λ < 10–10 м и вследствие этого – ярко выраженными корпускулярными свойствами, т. е. является потоком частиц – γ-квантов.

Альфа-распад. Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α-частица – ядро атома гелия . Примером такого процесса может служить α-распад радия:

Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость α-частиц, испускаемых при α-распаде ядер радия, измеренная по кривизне траектории в магнитном поле, приблизительно равна 1,5·107 м/с, а соответствующая кинетическая энергия около 7,5·10–13 Дж (приблизительно 4,8 МэВ). Эта величина легко может быть определена по известным значениям масс материнского и дочернего ядер и ядра гелия. Хотя скорость вылетающей α-частицы огромна, но она все же составляет только 5 % от скорости света, поэтому при расчете можно пользоваться нерелятивистским выражением для кинетической энергии.

Исследования показали, что радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде. При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рис. 6.7.2.

Рисунок 6.7.2.

Энергетическая диаграмма α-распада ядер радия. Указано возбужденное состояние ядра радона * Переход из возбужденного состояния ядра радона в основное сопровождается излучением γ-кванта с энергией 0,186 МэВ

Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.

В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т. е. α-частица. Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия α-частицы в ядре недостаточна для преодоления этого барьера (рис. 6.7.3). Вылет α-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером. Явление туннелирования имеет вероятностный характер.

Рисунок 6.7.3.

Туннелирование α-частицы сквозь потенциальный барьер

Бета-распад. При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут, они возникают при β-распаде в результате превращения нейтрона в протон. Этот процесс может происходить не только внутри ядра, но и со свободными нейтронами. Среднее время жизни свободного нейтрона составляет около 15 минут. При распаде нейтрон   превращается в протон   и электрон

Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году Вольфганг Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино. Она обозначается символом   Поэтому реакция распада нейтрона записывается в виде

Аналогичный процесс происходит и внутри ядер при β-распаде. Электрон, образующийся в результате распада одного из ядерных нейтронов, немедленно выбрасывается из «родительского дома» (ядра) с огромной скоростью, которая может отличаться от скорости света лишь на доли процента. Так как распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром носит случайный характер, β-электроны могут иметь различные скорости в широком интервале значений.

При β-распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным. Дочернее ядро оказывается ядром одного из изотопов элемента, порядковый номер которого в таблице Менделеева на единицу превышает порядковый номер исходного ядра. Типичным примером β-распада может служить превращение изотона тория  возникающего при α-распаде урана   в палладий

Наряду с электронным β-распадом обнаружен так называемый позитронный β+-распад, при котором из ядра вылетают позитрон  и нейтрино . Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей. Позитроны возникают в результате реакции превращения протона в нейтрон по следующей схеме:

 

Гамма-распад. В отличие от α- и β-радиоактивности, γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.

Закон радиоактивного распада. В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества N (t) нераспавшихся к данному моменту времени t ядер может служить важной статистической характеристикой процесса радиоактивного распада.

Пусть за малый промежуток времени Δt количество нераспавшихся ядер N (t) изменилось на ΔN < 0. Так как вероятность распада каждого ядра неизменна во времени, что число распадов будет пропорционально количеству ядер N (t) и промежутку времени Δt:

ΔN = –λN (t) Δt.

Коэффициент пропорциональности λ – это вероятность распада ядра за время Δt = 1 с. Эта формула означает, что скорость  изменения функции N (t) прямо пропорциональна самой функции.

Подобная зависимость возникает во многих физических задачах (например, при разряде конденсатора через резистор). Решение этого уравнения приводит к экспоненциальному закону:

где N0 – начальное число радиоактивных ядер при t = 0. За время τ = 1 / λ количество нераспавшихся ядер уменьшится в e ≈ 2,7 раза. Величину τ называют средним временем жизни радиоактивного ядра.

Для практического использования закон радиоактивного распада удобно записать в другом виде, используя в качестве основания число 2, а не e:

N (t) = N0 · 2t/T.

Величина T называется периодом полураспада. За время T распадается половина первоначального количества радиоактивных ядер. Величины T и τ связаны соотношением

Рис. 6.7.4 иллюстрирует закон радиоактивного распада.

Рисунок 6.7.4.

Закон радиоактивного распада

Период полураспада – основная величина, характеризующая скорость процесса. Чем меньше период полураспада, тем интенсивнее протекает распад. Так, для урана T ≈ 4,5 млрд лет, а для радия T ≈ 1600 лет. Поэтому активность радия значительно выше, чем урана. Существуют радиоактивные элементы с периодом полураспада в доли секунды.

При α- и β-радиоактивном распаде дочернее ядро также может оказаться нестабильным. Поэтому возможны серии последовательных радиоактивных распадов, которые заканчиваются образованием стабильных ядер. В природе существует несколько таких серий. Наиболее длинной является серия  состоящая из 14 последовательных распадов (8 α-распадов и 6 β-распадов). Эта серия заканчивается стабильным изотопом свинца   (рис. 6.7.5).

Рисунок 6.7.5.

Схема распада радиоактивной серии  Указаны периоды полураспада

В природе существуют еще несколько радиоактивных серий, аналогичных серии . Известна также серия, которая начинается с нептуния  не обнаруженного в естественных условиях, и заканчивается на висмуте  . Эта серия радиоактивных распадов возникает в ядерных реакторах.

Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода  возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом. Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот   с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода   в останках древних организмов можно определить время их гибели.

Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма. Поэтому при работе с любым источником радиации необходимо принимать все меры радиационной защиты людей, которые могут попасть в зону действия излучения.

Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон  . Как видно из схемы, изображенной на рис. 6.7.5, радон является продуктом α-распада радия и имеет период полураспада T = 3,82 сут. Радий в небольших количествах содержится в почве, в камнях, в различных строительных конструкциях. Несмотря на сравнительно небольшое время жизни, концентрация радона непрерывно восполняется за счет новых распадов ядер радия, поэтому радон может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает α-частицы и превращается в полоний , который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана (рис. 6.7.5). По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55 % ионизирующей радиации за счет радона и только 11 % за счет медицинских процедур. Вклад космических лучей составляет примерно 8 %. Общая доза облучения, которую получает человек за жизнь, во много раз меньше предельно допустимой дозы (ПДД), которая устанавливается для людей некоторых профессий, подвергающихся дополнительному облучению ионизирующей радиацией.

questions-physics.ru

Ядерная энергия и радиоактивность

Атом состоит из ядра, окруженного облаками частиц, называемых электронами (см. рис.). В ядрах атомов — мельчайших частиц, из которых состоят все вещества, — содержится значительный запас энергии. Именно эта энергия высвобождается в виде радиации при распаде радиоактивных элементов. Радиация опасна для жизни, однако ядерные реакции могут использоваться для производства электричества. Радиация также используется в медицине.

Радиоактивность

Радиоактивность — это свойство ядер не­стабильных атомов излучать энергию. Большинство тяжелых атомов нестабильны, а у более легких атомов бывают радиоизотопы, т.е. радиоактивные изотопы. Причина радиоактивности в том, что атомы стремятся стать стабильными (см. статью «Атомы и молекулы«). Существуют три вида радиоактивного излучения: альфа-лучи, бета-лучи и гамма-лучи. Они называются так по трем первым буквам греческого алфавита. Вначале ядро испускает альфа или бета-лучи, а если оно все еще остается нестабильным, ядро испускает и гамма-лучи. На рисунке вы видите три атомных ядра. Они нестабильны, и каждый из них испускает один из трех видов лучей. Бета-частицы – это электроны с очень большой энергией. Они возникают при распаде нейтрона. Альфа-частицы состоят из двух протонов и двух нейтронов. Точно такой же состав имеет ядро атома гелия. Гамма-лучи – это электромагнитное излучение большой энергии, распространяющееся со скоростью света.

Альфа-частицы движутся медленно, и слой вещества бо­лее толстый, чем лист бумаги, задерживает их. Они ничем не отличаются от ядер атомов гелия. Ученые полагают, что гелий на Земле есть продукт естественной радиоактивности. Альфа-частица пролетает менее 10 см, и лист плотной бумаги задержит её. Бета-частица пролетает в воздухе около 1 метра. Задержать её может лист меди толщиной 1 миллиметр. Интенсивность гамма-лучей спадает наполовину при проходе через слой свинца в 13 миллиметров или слой воздуха в 120 метров. 

Радиоактивные вещества транспортируются в свинцовых контейнерах с толстыми стенками, чтобы предотвратить утечку радиации. Воз­действие радиации вызывает у человека ожоги, катаракту, рак. Уровень радиации измеряется при помощи счетчика Гейгера. Этот прибор издаёт щелчки при обнаружении радиоактивного излучения. Испустив части­цы, ядро приобретает новый атомный   номер  и превращается в ядро другого элемента. Этот процесс называют радиоактивным распадом. Если новый элемент также нестабилен, процесс распада продолжается до тех пор, пока не образуется стабильное ядро. К примеру, когда атом плутония-2 (его масса 242) испускает альфа-частицу относительная атомная масса которой 4 (2 протона и 2 нейтрона), он превращается в атом урана — 238 (атомная масса 238). Период полураспада — это время, за которое распадается половина всех атомов в образце данного вещества. Разные элементы имеют разные периоды полураспада. Период полураспада радия-221 равен 30 секунд, тогда как у урана он  составляет 4,5 млрд. лет.

Ядерные реакции

Существуют два вида ядерных реакций: ядерный синтез и деление (расщепление) ядра. «Синтез» означает «соединение»; при ядерном синтезе два ядра соединяют­ся и одно большое. Ядерный синтез может происходить только при очень высоких температурах. При синтезе выделяется огромное количество энергии. При ядерном синтезе два ядра соединяются в одно большое. В 1992 году спутник КОБЕ обнаружил в космосе особый вид радиации, что подтверждает теорию о том, что Вселенная образовалась в результате так называемого Большого взрыва. Из термина «расщепление» ясно, что ядра раскалываются, высвобождая ядерную энергию. Такое возможно при бомбардировке ядер нейтронами и происходит в радиоактивных веществах либо в особом устройстве, называемом ускорителем частиц. Ядро делит­ся, излучая ней­троны и выделяя колоссальную энергию.

Ядерная энергия

Энергию, высвобождаемую при ядерных реакциях, можно использовать для производства электричества и как источник энергии на атомных подводных лодках и на авианосцах. Действие атомной электростанции основано делении ядер в ядерных реакторах. Стержень, сделан из радиоактивного вещества, например урана, бомбардируют нейтронами. Ядра урана расщепляются, излучая энергию. При этом освобождаются новые нейтроны. Такой процесс называют цепной реакцией. Из единицы массы топлива электростанции производит больше энергии, чем любые другие электростанции, однако меры безопасности и захоронение радиоактивных отходов стоит чрезвычайно дорого.

Ядерное оружие

Действие ядерного оружия основано на том, что неконтролируемый выброс огромного количества ядерной энергии приводит к страшному взрыву. В конце второй мировой войны США сбросили атомные бомбы на японские города Хиросиму и На­гасаки. Сотни тысяч людей погибли. Атомные бомбы основаны на реакциях деления, водородные — на реакциях синтеза. На рисунке изображена атомная бомба, сброшенная на Хиросиму.

Радиоуглеродный метод

Радиоуглеродным методом определяют время, прошедшее после смерти организма. В живой ткани содержится небольшое количество углерода-14, радиоактивного изо­топа углерода. Его период полураспада составляет 5700 лет. Когда организм умирает, запасы уг­лерода-14 в тканях, истощаются, изо­топ распадается, и по оставшемуся его количеству можно определить, как давно организм умер. Благодари радиоуглеродному методу можно узнать, как давно произошло извержение вулкана. Для этого используют застывших в лаве насекомых и пыльцу.

Как ещё используется радиоактивность

В промышленности при помощи радиации определяют толщину листа бумаги или пластика (см. статью «Пластмассы и природные полимеры«). По интенсивности бета-лучей, проходящих сквозь лист, можно обнаружить даже небольшую неоднородность его толщины. Продукты питания — фрукты, мясо — облучают гам­ма-лучами, чтобы они остались свежими. Используя радиоактивность, медики прослеживают путь вещества в организме. Например, чтобы определить, как сахар распределяет­ся в теле пациента, врач может ввести немного углерода-14 в молекулы сахара и следить за излучением этого вещества, попавшего в организм. Радиотерапия, то есть облучение больного строго дозированными порциями излучения, убивает раковые клетки – чрезмерно разросшиеся клетки организма.

www.polnaja-jenciklopedija.ru

Радиоактивность | ЭТО ФИЗИКА

Почти 90 % из 2500 известных атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью. У больших ядер нестабильность возникает вследствие конкуренции между притяжением нуклонов ядерными силами и кулоновским отталкиванием протонов. Стабильных ядер с зарядовым числом Z > 83 и массовым числом A > 209 не существует. Но радиоактивными могут оказаться и ядра атомов с существенно меньшими значениями чисел Z и A. Если ядро содержит значительно больше протонов, чем нейтронов, то нестабильность обуславливается избытком энергии кулоновского взаимодействия. Ядра, которые содержат избыток нейтронов, оказываются нестабильными вследствие того, что масса нейтрона превышает массу протона. Увеличение массы ядра приводит к увеличению его энергии.

Явление радиоактивности было открыто в 1896 году французским физиком А. Беккерелем, который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года французские физики М. и П. Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний  и радий .

В последующие годы исследованием природы радиоактивных излучений занимались многие физики, в том числе Э. Резерфорд и его ученики. Было выяснено, что радиоактивные ядра могут испускать частицы трех видов: положительно и отрицательно заряженные и нейтральные. Эти три вида излучений были названы α-, β- и γ-излучениями. На рис. 6.7.1 изображена схема эксперимента, позволяющая обнаружить сложный состав радиоактивного излучения. В магнитном поле α- и β-лучи испытывают отклонения в противоположные стороны, причем β-лучи отклоняются значительно больше. γ-лучи в магнитном поле вообще не отклоняются.

Рисунок 6.7.1.

Схема опыта по обнаружению α-, β- и γ-излучений. К – свинцовый контейнер, П – радиоактивный препарат, Ф – фотопластинка,  – магнитное поле

Эти три вида радиоактивных излучений сильно отличаются друг от друга по способности ионизировать атомы вещества и, следовательно, по проникающей способности. Наименьшей проникающей способностью обладает α-излучение. В воздухе при нормальных условиях α-лучи проходят путь в несколько сантиметров. β-лучи гораздо меньше поглощаются веществом. Они способны пройти через слой алюминия толщиной в несколько миллиметров. Наибольшей проникающей способностью обладают γ-лучи, способные проходить через слой свинца толщиной 5–10 см.

Во втором десятилетии XX века, после открытия Э. Резерфордом ядерного строения атомов было твердо установлено, что радиоактивность – это свойство атомных ядер. Исследования показали, что α-лучи представляют поток α-частиц – ядер гелия , β-лучи – это поток электронов, γ-лучи представляют собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны λ < 10–10 м и вследствие этого – ярко выраженными корпускулярными свойствами, т. е. является потоком частиц – γ-квантов.

Альфа-распад. Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α-частица – ядро атома гелия . Примером такого процесса может служить α-распад радия:

Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость α-частиц, испускаемых при α-распаде ядер радия, измеренная по кривизне траектории в магнитном поле, приблизительно равна 1,5·107 м/с, а соответствующая кинетическая энергия около 7,5·10–13 Дж (приблизительно 4,8 МэВ). Эта величина легко может быть определена по известным значениям масс материнского и дочернего ядер и ядра гелия. Хотя скорость вылетающей α-частицы огромна, но она все же составляет только 5 % от скорости света, поэтому при расчете можно пользоваться нерелятивистским выражением для кинетической энергии.

Исследования показали, что радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде. При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рис. 6.7.2.

Рисунок 6.7.2.

Энергетическая диаграмма α-распада ядер радия. Указано возбужденное состояние ядра радона * Переход из возбужденного состояния ядра радона в основное сопровождается излучением γ-кванта с энергией 0,186 МэВ

Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.

В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т. е. α-частица. Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия α-частицы в ядре недостаточна для преодоления этого барьера (рис. 6.7.3). Вылет α-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером. Явление туннелирования имеет вероятностный характер.

Рисунок 6.7.3.

Туннелирование α-частицы сквозь потенциальный барьер

Бета-распад. При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут, они возникают при β-распаде в результате превращения нейтрона в протон. Этот процесс может происходить не только внутри ядра, но и со свободными нейтронами. Среднее время жизни свободного нейтрона составляет около 15 минут. При распаде нейтрон   превращается в протон   и электрон

Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году Вольфганг Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино. Она обозначается символом   Поэтому реакция распада нейтрона записывается в виде

Аналогичный процесс происходит и внутри ядер при β-распаде. Электрон, образующийся в результате распада одного из ядерных нейтронов, немедленно выбрасывается из «родительского дома» (ядра) с огромной скоростью, которая может отличаться от скорости света лишь на доли процента. Так как распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром носит случайный характер, β-электроны могут иметь различные скорости в широком интервале значений.

При β-распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным. Дочернее ядро оказывается ядром одного из изотопов элемента, порядковый номер которого в таблице Менделеева на единицу превышает порядковый номер исходного ядра. Типичным примером β-распада может служить превращение изотона тория  возникающего при α-распаде урана   в палладий

Наряду с электронным β-распадом обнаружен так называемый позитронный β+-распад, при котором из ядра вылетают позитрон  и нейтрино . Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей. Позитроны возникают в результате реакции превращения протона в нейтрон по следующей схеме:

 

Гамма-распад. В отличие от α- и β-радиоактивности, γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.

Закон радиоактивного распада. В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества N (t) нераспавшихся к данному моменту времени t ядер может служить важной статистической характеристикой процесса радиоактивного распада.

Пусть за малый промежуток времени Δt количество нераспавшихся ядер N (t) изменилось на ΔN < 0. Так как вероятность распада каждого ядра неизменна во времени, что число распадов будет пропорционально количеству ядер N (t) и промежутку времени Δt:

ΔN = –λN (t) Δt.

Коэффициент пропорциональности λ – это вероятность распада ядра за время Δt = 1 с. Эта формула означает, что скорость  изменения функции N (t) прямо пропорциональна самой функции.

Подобная зависимость возникает во многих физических задачах (например, при разряде конденсатора через резистор). Решение этого уравнения приводит к экспоненциальному закону:

где N0 – начальное число радиоактивных ядер при t = 0. За время τ = 1 / λ количество нераспавшихся ядер уменьшится в e ≈ 2,7 раза. Величину τ называют средним временем жизни радиоактивного ядра.

Для практического использования закон радиоактивного распада удобно записать в другом виде, используя в качестве основания число 2, а не e:

N (t) = N0 · 2t/T.

Величина T называется периодом полураспада. За время T распадается половина первоначального количества радиоактивных ядер. Величины T и τ связаны соотношением

Рис. 6.7.4 иллюстрирует закон радиоактивного распада.

Рисунок 6.7.4.

Закон радиоактивного распада

Период полураспада – основная величина, характеризующая скорость процесса. Чем меньше период полураспада, тем интенсивнее протекает распад. Так, для урана T ≈ 4,5 млрд лет, а для радия T ≈ 1600 лет. Поэтому активность радия значительно выше, чем урана. Существуют радиоактивные элементы с периодом полураспада в доли секунды.

При α- и β-радиоактивном распаде дочернее ядро также может оказаться нестабильным. Поэтому возможны серии последовательных радиоактивных распадов, которые заканчиваются образованием стабильных ядер. В природе существует несколько таких серий. Наиболее длинной является серия  состоящая из 14 последовательных распадов (8 α-распадов и 6 β-распадов). Эта серия заканчивается стабильным изотопом свинца   (рис. 6.7.5).

Рисунок 6.7.5.

Схема распада радиоактивной серии  Указаны периоды полураспада

В природе существуют еще несколько радиоактивных серий, аналогичных серии . Известна также серия, которая начинается с нептуния  не обнаруженного в естественных условиях, и заканчивается на висмуте  . Эта серия радиоактивных распадов возникает в ядерных реакторах.

Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода  возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом. Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот   с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода   в останках древних организмов можно определить время их гибели.

Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма. Поэтому при работе с любым источником радиации необходимо принимать все меры радиационной защиты людей, которые могут попасть в зону действия излучения.

Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон  . Как видно из схемы, изображенной на рис. 6.7.5, радон является продуктом α-распада радия и имеет период полураспада T = 3,82 сут. Радий в небольших количествах содержится в почве, в камнях, в различных строительных конструкциях. Несмотря на сравнительно небольшое время жизни, концентрация радона непрерывно восполняется за счет новых распадов ядер радия, поэтому радон может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает α-частицы и превращается в полоний , который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана (рис. 6.7.5). По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55 % ионизирующей радиации за счет радона и только 11 % за счет медицинских процедур. Вклад космических лучей составляет примерно 8 %. Общая доза облучения, которую получает человек за жизнь, во много раз меньше предельно допустимой дозы (ПДД), которая устанавливается для людей некоторых профессий, подвергающихся дополнительному облучению ионизирующей радиацией.

www.its-physics.org

1 245 комментариев