Вопросы и ответы

Примеры организма саморегуляции – Ключ к себе. Саморегуляция. Статья раздела «Самопознание. Путь к себе». Эзотерика и духовное развитие.

Саморегуляция в биологии

Саморегуляция в биологии — свойство биологичес­ких систем автоматически устанавливать и поддерживать на определенном, относительно постоянном уровне те или иные физиологические и другие биологические показате­ли.

Организм представляет собой сложную систему, способную к саморегуляции. Саморегуляция позволяет орга­низму эффективно приспосабливаться к изменениям окру­жающей среды. Способность к саморегуляции в сильной степени выражена у высших позвоночных, особенно у млекопитающих. Достигается это благодаря мощному раз­витию нервной, кровеносной, иммунной, эндокринной, пищеварительной систем.

Изменение условий с неизбежностью влечет за собой перестройку их работы. Например, нехватка кислорода в воздухе приводит к интенсификации работы кровеносной системы, учащается пульс, возрастает количество гемогло­бина в крови. В результате организм приспосабливается к изменившимся условиям.

Постоянство внутренней среды при систематически меняющихся окружающих условиях создается совместной деятельностью всех систем организма. У высших животных это выражается в поддержании постоянной температуры тела, в постоянстве химического, ионного и газового со­става, давления, частоты дыхания и сердечных сокраще­ний, постоянном синтезе нужных веществ и разрушении вредных.

Обмен веществ — обязательное условие и способ под­держания стабильности организации живого. Без обмена веществ невозможно существование живого организма. Обмен веществ и энергии между организмом и внешней средой — неотъемлемое свойство живого.

Особую роль в поддержании постоянства внутренней среды (гомеостаза) играет иммунная (защитная) система. Русский ученый И.И.Мечников был одним из первых биологов, доказавших ее огромную важность. Клетки им­мунной системы выделяют специальные белки антитела — которые активно обнаруживают и уничтожают все чужое для данного организма.

Примеры саморегуляции на клеточном уровнесамо­сборка клеточных органелл из биологических макромоле­кул, поддержание определенного значения трансмембран­ного потенциала у возбудимых клеток и закономерная временная и пространственная последовательность ион­ных потоков при возбуждении клеточной мембраны.

 На надклеточном уровнесамоорганизация разнородных клеток в упорядоченные клеточные ассоциации.

Большинство органов способно к внутриорганной саморегуляции функций; например, внутрисердечные рефлекторные дуги обеспечивают закономерные соотношения давления в по­лостях сердца.

Разнообразны проявления и механизмы саморегуля­ции в популяциях (сохранение и регуляция видового уровня) и биоценозах (регуляция численности популяций, соотно­шение полов в них, старение и смерть особей). Крупные сообщества — устойчивые системы, некоторые из них существуют без заметных изменений сотни и тысячи лет. Но само сообщество — это не просто сумма составляющих его видов. Межвидовые взаимодействия регулируют чис­ленность разных видов, входящих в состав сообщества. Все вместе составляет саморегуляцию.

Все вместе составляет саморегуляцию.

www.bioaa.info

Приведите примеры свморегуляции физеологических процессов в организме.

Получение необходимой информации обеспечивает в биологических системах саморегуляцию. Саморегуляция осуществляется в организмах по принципу обратной связи.

Продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составляют начальное звено в длинной цепи реакций. По принципу обратной связи регулируются:

процессы обмена веществ;
репродукции;
считывания наследственной информации и т. д.
Саморегуляцией в организмах поддерживается постоянство структурной организации — гомеостаз (греч. gomos — равный, неизменный, stasis — состояние) . Организмам свойственно постоянство химического состава, физико-химических особенностей. Для всех живых существ характерно наличие механизмов, поддерживающих постоянство внутренней среды.
Примеры саморегуляции (поддержания гомеостаза) у млекопитающих:

Регуляция количества минеральных веществ и воды в теле — осморегуляция. Осуществляется в почках.
Удаление отходов процесса обмена веществ — выделение. Осуществляется экзокринными органами — почками, лёгкими, потовыми железами.
Регуляция температуры тела. Понижение температуры через потоотделение, разнообразные терморегулирующие реакции.
Регуляция уровня глюкозы в крови. В основном осуществляется печенью, инсулином и глюкагоном, выделяемыми поджелудочной железой.
Важно отметить, что, хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Во многих организмах наблюдаются эндогенные изменения в форме циркадного, ультрадианного и инфрадианного ритмов. Так, даже находясь в гомеостазе, температура тела, кровяное давление, частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.
Механизм поддержания саморегуляции — отрицательная обратная связь.
Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, или фидбека, на которые реагирует система:

Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.
Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.
Терморегуляция — другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры.
Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.
Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.

otvet.mail.ru

Саморегуляция жизненных функций организмов

Биология Саморегуляция жизненных функций организмов

просмотров — 1286

Понятие о саморегуляции. Саморегуляция (авторегуляция)– способность живых организмов поддерживать постоянство своей структуры, химического состава и интенсивность физиологических процессов. К примеру хлоропласты способны к самостоятельному передвижению в клетках под влиянием света͵ поскольку они очень чувствительны к нему. В солнечный яркий день при большой интенсивности света хлоропласты располагаются вдоль клеточной оболочки, как бы стараясь избежать действия сильного света. В пасмурные облачные дни хлоропласты располагаются по всœей поверхности цитоплазмы клетки, чтобы поглощать больше солнечных лучей (рис. ). Переход хлоропластов из одного положения в другое под влиянием света совершается благодаря клеточной регуляции.

Саморегуляция осуществляется по принципу обратной связи, подобно тому как, к примеру, осуществляется поддержание постоянной температуры в термостате. В этом приборе существует следующая причинная зависимость терморегуляции:

Выключатель – нагрев – температура.

Путем включения и выключения можно от руки регулировать температуру. В термостате это осуществляется автоматически, через измеряющий температуру регулятор, включающий или выключающий нагрев в соответствии с показаниями. Температура влияет на выключатель через регулятор и в системе устанавливается обратная связь:

Выключатель – нагрев – температура –

регулятор

Сигналом для включения той или иной регуляционной системы может быть изменение концентрации какого-либо вещества или состояния какой-либо системы, проникновение во внутреннюю среду организма чужеродного вещества и т.д.

Регуляция процессов метаболизма. Образование и концентрация любого продукта обмена веществ в клетке определяется следующей причинной зависимостью:

ДНК – фермент – продукт.

ДНК запускает определœенным образом синтез ферментов. Ферменты в свою очередь катализируют образование и превращение продукта. Образующийся продукт может оказывать влияние на цепь реакций через нуклеиновые кислоты (генная регуляция) или через ферменты (ферментная регуляция):

ДНК – фермент – продукт

ДНК – фермент – продукт[VV137] .

Ранее мы уже рассматривали регуляцию процессов транскрипции и трансляции (см. § 33 ), которая является примером саморегуляции.

Или другой пример. В результате энергопотребляющих реакций (синтез различные различных синтезы веществ, поглощение веществ из окружающей среды, рост, делœение клеток и т.п.) концентрация АТФ в клетках уменьшается, а АДФ соответственно возрастает (АТФ – АДФ + Ф). Накопление АДФ активирует работу дыхательных ферментов и дыхательные процессы в целом, и таким образом, усиление генерации энергии в клетке (рис. ).

Регуляция функций у растений. Функции растительного орга­низма (рост, развитие, обмен веществ и др.) регули­руются с помощью биологически активных веществ — фитогормонов (см. § 8). В незначительных количествах они могут ускорять или замедлять различные жиз­ненные функции растений (делœение клеток, про­растание семян и др.). Фитогормоны образуются определœенными клетками и транспортируются к месту их действия по проводящим тканям или непо­средственно от одной клетки к другой.

Растения способны воспринимать изменения в окру­жающей среде и определœенным образом реагировать на них. Такие реакции получили название тропизмов и настий.

Тропизмы (от греч. тропос — поворот, из­менение направления) — это ростовые движения ор­ганов растений в ответ на раздражитель, имеющий определœенную направленность. Эти движения могут осуществляться как в сторону раздражителя, так и в противоположную. Οʜᴎ являются резуль­татом неравномерного делœения клеток на разных сторонах этих органов в ответ на действие фитогормонов роста.

Настии (от греч. настое — уплотненный) — это движения органов растений в ответ на действие раздражителя, не имеющего определœенного на­правления (к примеру, изменение освещенности, тем­пературы). Примером настий может служить раскры­вание и закрывание венчика цветка в зависимости от освещенности, складывание листьев при изменении температуры. Настии бывают обуслов­лены растяжением органов вследствие неравномер­ного их роста или изменением давления в определœенных группах клеток в результате изменений концен­трации клеточного сока.

Регуляция жизненных функций орга­низма животных. Жизненные функции организма животных в целом, отдельных его органов и систем, согласованность их деятельности, поддержание определœенного физиоло­гического состояния и гомеостаза регулируютнервная и эндокринная системы. Эти системы функционально взаимосвяза­ны между собой и влияют на деятельность друг друга.

Нервная системарегулирует жизненные функ­ции организма с помощью нервных импульсов, имеющих электрическую природу. Нервные импу­льсы передаются от рецепторов к определœенным центрам нервной системы, где осуществляется их анализ и синтез, а также формируются соответству­ющие реакции. От этих центров нервные импульсы направляются к рабочим органам, изменяя опреде­ленным образом их деятельность.

Нервная система способна быстро воспринимать изменения, происходящие во внешней и внутренней среде организма, и быстро на них реагировать. Вспо­мним, что реакцию организма на раздражители вне­шней и внутренней среды, осуществляющуюся при участии нервной системы, называют рефлексом (от лат. рефлексус — повернутый назад, отраженный). Следовательно, нервной системе свойствен рефлекто­рный принцип деятельности. В основе сложной аналитико-синтетической деятельности нервных центров лежат процессы возникновения нервного во­збуждения и его торможения. Именно на этих процес­сах основывается высшая нервная деятельность человека и некоторых животных, обеспечивающая совершенное приспособление к изменениям в окружа­ющей среде.

Ведущая роль в гуморальной регуляции жизненных функций организма принадлежит системе желœез внутренней секреции.Эти желœезы развиты у боль­шинства групп животных. Οʜᴎ не связаны пространст­венно, их работа согласовывается или благодаря нервной регуляции, или же гормоны, вырабатываемые одними из них, влияют на работу других. В свою очередь, гормо­ны, выделяемые желœезами внутренней секреции, влия­ют на деятельность нервной системы.

Особое место в регуляции функций организма жи­вотных принадлежит нейрогормонам биологичес­ки активным веществам, вырабатываемым особыми клетками нервной ткани. Такие клетки выявлены у всœех животных, имеющих нервную систему. Нейрогормоны поступают в кровь, межклеточную или спинномозговую жидкость и транспортируются ими к тем органам, работу которых они регулируют.

У позвоночных животных и человека существует тесная связь между гипоталамусом (отдел промежу­точного мозга) и гипофизом (желœеза внутренней секреции, связанная с промежуточным мозгом). Вместе они составляют гипоталамо-гипофизарную систему. Эта связь состоит по сути в том, что синтезированные клетками гипоталамуса нейрогормоны поступают по кровеносным сосудам в перед­нюю долю гипофиза. Там нейрогормоны стимулируют или тормозят выработку определœенных гормонов, влияющих на деятельность других желœез внутрен­ней секреции. Основное биологическое значение гипоталамо-гипофизарной системы — осуществление совершенной регуляции вегетативных функций ор­ганизма и процессов размножения. Благодаря этой системе работа желœез внутренней секреции может быстро изменяться под влиянием раздражителœей внешней среды, которые воспринимаются органами чувств и обрабатываются в нервных центрах.

Гуморальная регуляция может осуществляться и с помощью других биологически активных веществ. К примеру, изменение концентрации углекислого газа в крови влияет на деятельность дыхательного центра головного мозга наземных позвоночных жи­вотных, а ионов кальция и калия — на работу сердца.

Регуляционные системы непрерывно контролируют состояние организма, автоматически поддерживая его параметры на почти постоянном уровне, даже в условиях неблагоприятных внешних воздействий. В случае если под воздействием какого-либо фактора состояние клетки или органа изменяется, то это удивительное свойство помогает им вернуться вновь в нормальное состояние. В качестве примера механизма работы таких регуляторных систем рассмотрим реакцию организма человека на физические нагрузки.

Реакция на физическую нагрузку.При интенсивной физической нагрузке нервная система посылает сигналы в мозговое вещество надпочечников — эндо­кринных желœез, лежащих над почками[VV138] . Эти желœезы выделяют в кровь гормон адреналин.

Под действием адреналина из селœезенки[VV139] в сосуды поступает неĸᴏᴛᴏᴩᴏᴇ количество депонированной в ней крови, в результате чего объем перифериче­ской крови увеличивается. Адреналин вызывает также расширение капилляров кожи, мышц и сердца, увеличивая их кровоснабжение. При физической нагруз­ке сердце должно работать более интенсивно, перекачивая больше крови; мы­шцы должны приводить в движение конечности; кожа должна выделять боль­ше пота͵ чтобы отвести излишек тепла, образующегося в результате интенсивной работы мышц. Адреналин вызывает также сужение кровеносных сосудов брюшной полости и почек, уменьшая их кровенаполнение. Такое перераспределœение крови позволяет поддерживать кровяное давление на нор­мальном уровне (при расширенном русле крови для этого оказывается недостаточно[VV140] ).

Адреналин повышает также частоту дыхания и сокращений сердца. В ре­зультате поступление в кровь кислорода и выведение из нее углекислого газа происходит быстрее, кровь движется по сосудам также быстрее, доставляя больше кислорода интенсивно работающим мышцам и ускоряя удаление ко­нечных продуктов обмена.

При физической нагрузке мышцы выделяют больше углекислого газа, чем обычно, и это само по себе обладает регуляторным воздействием. Углекислый газ повышает кислотность крови, что влечет за собой усиление снабжения мышц кислородом и расширение кровеносных сосудов мышц, а также стимулирует нервную систему к увеличению выделœения адреналина, что в свою очередь повышает частоту дыхания и пульса (рис. ).

На первый взгляд всœе эти приспособления к физической нагрузке должны изменять состояние организма, однако в действительности они обеспечивают сохранение того же состава внеклеточной жидкости, омывающей всœе клетки организма, и в особенности мозг, каким он был бы без нагрузки. В случае если бы не было этих приспособлений, физическая нагрузка приводила бы к повышению температуры внеклеточной жидкости, к уменьшению концентрации в ней кис­лорода и к повышению ее кислотности. При крайне тяжелой физической на­грузке всœе это и происходит; в мышцах накапливается кислота͵ вызывая судо­роги. Сами судороги также несут регуляторную функцию, пресекая возмож­ность дальнейшей физической работы и давая возможность организму вернуться в нормальное состояние.

s1. Какие регуляторные системы существуют в живом организме? 2. Как осуществляется регуляция жизненных функций в организме? 3. Что такое гомеостаз и какие механизмы его поддержания вам известны? 4. Что общего и отли­чного между нервной и гуморальной регуляцией? 5.Какая связь существует между нервной системой и системой желœез внутренней секреции? 6. Какие изменения происходят в кровеносной системе организма человека при физических нагрузках? Каким образом осуществляется регуляция этих изменений? 7. Вспомните из курса биологии 9 класса, какие возможны нарушения функционирования организма человека в результате нарушения взаимосвязей между нервной системой и системой желœез внутренней секреции?

§ 35. Иммунная регуляция[VV141]

Важную роль в обеспечении жизнедеятельности организма играет иммунная система. Как вы уже зна­ете, иммунитет(от лат. иммунитас – невосприимчивость) – способность организма защищать собственную целостность, его невосприимчивость к возбудителям некоторых заболеваний. В создании иммунитета принимают участие специфические и неспецифические механизмы.

Кнеспецифическим механизмам иммуните­таотносятся барьерная функция кожного эпителия и слизистых оболочек внутренних органов; бактери­цидное действие некоторых ферментов (к примеру, некоторые ферменты слюны, слезной жидкости, гемолимфы членистоногих) и кислот (выделяемых с секретом потовых и сальных желœез, желœез слизистой оболочки желудка). Эту функцию выполняют также клетки разных тканей, способные обезвреживать чужеродные для данного организма частицы и мик­роорганизмы.

Специфические механизмы иммунитетаобеспечиваются иммунной системой, которая узнает и обезвреживает антигены (от греч. анти — против и генезис — происхождение) — химические вещества, вырабатываемые клетками или входящие в состав их структур, либо микроорганизмы, воспринимае­мые организмом как чужеродные и вызывающие иммунный ответ с его стороны.

oplib.ru

Саморегуляция организма человека в процессе жизнедеятельности

Окружающий мир и обстановка, в которой находится человек, меняется буквально каждую минуту. Чтобы сохранить здоровье и поддерживать нормальное функционирование, организм должен к ним быстро приспосабливаться. Саморегуляция организма по научному называется гомеостазом. Если какой-то орган или участок начинает работать неправильно, в мозг поступает сигнал о нарушении работы. Обработав полученную информацию, мозг посылает ответный приказ о нормализации работы, таким образом осуществляется так называемая «обратная связь», то есть происходит саморегуляция организма. Она возможна благодаря вегетативной (автономной) нервной системе.

Именно эта система поддерживает саморегуляцию и отвечает за правильную работу кровеносных сосудов сердца, дыхательных органов, системы пищеварения и мочеотделения, также вегетативная система нормализует деятельность желез системы эндокринной, кроме того, она отвечает за питание центральной нервной системы и мышц скелета. За правильное функционирование автономной нервной системы отвечает участок мозга гипоталамус, именно там расположены так называемые «центры управления», которые тоже подчиняются вышестоящей инстанции – коре больших полушарий мозга. Вегетативная нервная система делится на 2 части: симпатическую и парасимпатическую.

Первая активно работает в экстремальных ситуациях, когда требуется очень быстрый отклик. При стрессах, опасных ситуациях, сильном раздражении симпатическая система резко активизирует свои функции и запускает механизмы саморегуляции. Процесс её деятельности можно увидеть невооруженным глазом: учащается сердцебиение, зрачки становятся шире, пульс увеличивается, в это же время быстро тормозится деятельность пищеварительных органов, весь организм приходит в состояние «боевой готовности».

Парасимпатическая нервная система наоборот, работает в условиях полного спокойствия, отдыха, активизирует работу пищеварительного тракта, расширяет сосуды.

В оптимальных условиях, обе системы работают в человеке хорошо, находятся в гармонии. Если баланс работы систем нарушается, человек чувствует неприятные последствия: тошнота, головная боль, спазмы, головокружение.

В коре головного мозга протекают психические процессы, они могут сильно повлиять на деятельность органов, а нарушения в работе органов могут отразиться на психических процессах. Яркий пример: изменение настроения после хорошего приема пищи. Еще один пример – зависимость общего состояния организма от скорости обмена веществ. Если она достаточно высокая – психические реакции протекают моментально, а если низкая – человек чувствует усталость, вялость и не может сосредоточиться на работе.

Гипоталамус контролирует вегетативную систему, именно в этот участок приходят все тревожные сигналы об изменении деятельности систем организма или его отдельных органов, именно гипоталамус посылает сигналы изменении работы для приведения организма в привычное состояние, включает механизмы саморегуляции. Например, при большой физической нагрузке, когда человеку «не хватает воздуха», гипоталамус заставляет сердечную мышцу сокращаться чаще, таким образом, организм получает необходимый кислород быстрее и в полном объеме.

vekneboley.ru

Психофизиологические тренировки. Понятие о саморегуляции, аутотренинг


Читайте также:

  1. I. Психофизиологические принципы
  2. PR: понятие и определение.
  3. А) понятие и задачи
  4. Агропромышленная интеграция и кооперация в сельскохозяйственном производстве (значение, понятие, виды)
  5. Адвокатура. Понятие, задачи и виды юридической помощи
  6. Админ правонарушения: понятие и юр состав.
  7. Админ. правонарушения: понятие и юридический состав.
  8. Административная ответственность: понятие и виды.
  9. Административное наказание: понятие, виды, правила назначения.
  10. Административный договор: понятие, признаки, виды

Саморегуляция — это свойство биологических систем автоматически устанавливать и поддерживать на определённом, относительно постоянном уровне биологические показатели. …
Процесс саморегуляции может носить циклический характер.

Очень широко в биологических системах используется саморегуляция по принципу обратной связи. Обратная связь может быть положительной (при изменении одного параметра система способствует дальнейшему изменению в том же направлении) и отрицательной (при изменении параметра система препятствует дальнейшему изменению в том же направлении).

Саморегуляция в биологии — свойство биологичес­ких систем автоматически устанавливать и поддерживать на определенном, относительно постоянном уровне те или иные физиологические и другие биологические показате­ли.

Организм представляет собой сложную систему, способную к саморегуляции.Саморегуляция позволяет орга­низму эффективно приспосабливаться к изменениям окру­жающей среды. Способность к саморегуляции в сильной степени выражена у высших позвоночных, особенно у млекопитающих. Достигается это благодаря мощному раз­витию нервной, кровеносной, иммунной, эндокринной, пищеварительной систем.

Изменение условий с неизбежностью влечет за собой перестройку их работы. Например, нехватка кислорода в воздухе приводит к интенсификации работы кровеносной системы, учащается пульс, возрастает количество гемогло­бина в крови. В результате организм приспосабливается к изменившимся условиям.

Постоянство внутренней среды при систематически меняющихся окружающих условиях создается совместной деятельностью всех систем организма. У высших животных это выражается в поддержании постоянной температуры тела, в постоянстве химического, ионного и газового со­става, давления, частоты дыхания и сердечных сокраще­ний, постоянном синтезе нужных веществ и разрушении вредных.

Обмен веществ — обязательное условие и способ под­держания стабильности организации живого. Без обмена веществ невозможно существование живого организма. Обмен веществ и энергии между организмом и внешней средой — неотъемлемое свойство живого.

Особую роль в поддержании постоянства внутренней среды (гомеостаза) играетиммунная (защитная) система. Русский ученый И.И.Мечников был одним из первых биологов, доказавших ее огромную важность. Клетки им­мунной системы выделяют специальные белкиантитела — которые активно обнаруживают и уничтожают все чужое для данного организма.

Примеры саморегуляции на клеточном уровнесамо­сборка клеточных органелл из биологических макромоле­кул, поддержание определенного значения трансмембран­ного потенциала у возбудимых клеток и закономерная временная и пространственная последовательность ион­ных потоков при возбуждении клеточной мембраны.

На надклеточном уровнесамоорганизация разнородныхклетокв упорядоченные клеточные ассоциации.

Большинство органов способно к внутриорганной саморегуляции функций; например, внутрисердечные рефлекторные дуги обеспечивают закономерные соотношения давления в по­лостях сердца.

Разнообразны проявления и механизмы саморегуля­ции в популяциях (сохранение и регуляция видового уровня) и биоценозах (регуляция численности популяций, соотно­шение полов в них, старение и смерть особей). Крупные сообщества — устойчивые системы, некоторые из них существуют без заметных изменений сотни и тысячи лет. Но само сообщество — это не просто сумма составляющих его видов. Межвидовые взаимодействия регулируют чис­ленность разных видов, входящих в состав сообщества. Все вместе составляет саморегуляцию.

Все вместе составляет саморегуляцию.

Аутогенная тренировка — (от др.-греч. αὐτός — «сам», γένος — «происхождение») — психотерапевтическая методика, направленная на восстановление динамического равновесиягомеостатических механизмов человеческого организма, нарушенных в результате дистресса.

Методика аутогенной тренировки (аутотренинга, АТ) основана на применении мышечной релаксации, самовнушении и аутодидактике (самовоспитании). Являясь «родственницей»гипнотерапии, АТ выгодно отличается от последней тем, что пациент активно вовлекается в процесс терапии, в отличие от пассивной роли пациента в лечении гипнозом. В качестве лечебного метода, АТ была предложена немецким врачом Иоганном Шульцем (Schultz, J.H.) в 1932 году. В России она начала применяться в конце 50-х годов XX века.

Лечебный эффект АТ обусловлен возникающей в результате релаксации трофотропной реакции, сопровождающейся повышением тонуса парасимпатического отдела вегетативной нервной системы, что в свою очередь способствует нейтрализации негативной стрессовой реакции организма. Некоторые исследователи (напр. Лобзин В. С., 1974), связывают действие АТ с ослаблением активности лимбической и гипоталамической областей головного мозга.

Согласно классификации д-ра Шульца, используемой и в настоящее время, АТ разделяется на «низшую» ступень, включающую упражнения на релаксацию и самовнушение, и «высшую», направленную на введение пациента в трансовые состояния разной глубины и интенсивности. Высшую ступень АТ впервые в России подробно разработал и описал М.С. Шойфет (Самогипноз. Тренинг психофизическойсаморегуляции. Питер. 2003 г.)


| следующая лекция ==>
Билет 30| Задача 3.

refac.ru

Саморегуляция в организме | Бесплатные курсовые, рефераты и дипломные работы

У многоклеточных организмов имеется внутренняя среда, в которой находятся различные органы, при этом функционируют сложные механизмы гомеостаза и гомеокинеза. У растений обеспечивается оптимальный газообмен, погло­ще­ние воды и питательных веществ из почвы, испарение воды через устьица листьев. У животных формируются органы дыхания, пищеварения, выделения, крово­обращения, появляются также специализиро­ванные эндокринная и нервная системы с многочисленными внешними и внутренними связями, непосредственно участвующие в саморегуляции. Стратегической задачей этих структур и регуляций является обеспечение нормального формирования половых клеток и процесса оплодотворения, развития зародышей, а часто и юных постэмбриональных стадий новых поколений.

Особую координирующую роль в поддержании физиологического гомеостаза многоклеточных животных играют нервная и гуморальная (эндокринная) системы регуляции. Кроме того, молекулярно-клеточно-тканевой гомеостаз организма обеспечивается иммунными механизмами. Дадим самую общую характеристику этих систем как главных участников процесса саморегуляции организма.

 

(1) Нервная регуляция

Нервная регуляция имеется уже у гидр и медуз – наиболее простых многоклеточных животных. Элементарными структурами нервных сетей выступают нервные клетки (нейроны) с длинными отростками. У высокоорганизованных животных скопления нейронов создают нервные центры: ганглии, цепочки, ядерные или экранные центры, а выходящие из них отростки нейронов объединяются в нервы, которые на периферии ветвятся многочисленными нервными окончаниями. У человека центральная нервная система (ЦНС) представлена головным и спинным мозгом; периферическая система включает нервы и их окончания, а также локальные скопления нейронов в виде ганглиев или рыхлых узлов, в том числе во внутренних органах.

В простейшей нервной цепочке связи распространяются, с одной стороны, на чувствительные рецепторы (кожные, зрительные, слуховые, обонятельные, вкусовые, рецепторы внутренних органов, сосудов), а с другой – на исполнительные структуры (мышцы тела, внутренних органов и сосудов, железы пищеварительного тракта и кожи, эндокринные железы и др.). Таким образом, буквально каждый участок тела пронизан чувствительными и двигательными нервными окончаниями, что позволяет организму иметь информацию о состоянии условий среды во всех его точках и управлять этими состояниями, как правило, с участием гуморальной регуляции. У человека, кроме того, головной мозг осуществляет психические функции (обучение, память, речь, мышление). В итоге нервная система регулирует работу внутренних органов, а также координирует взаимоотношение организма с внешним миром и организует сложные поведенческие акты.

Элементарным явлением в гомеостатической нервной регуляции выступаетрефлекс – ответная реакция органа или всего организма на внешнее или внутреннее раздражение, осуществляемая через нервную систему. Коснитесь рукой горя­чего предмета, и тут же последует рефлекторный ответ – непроизвольное отдергивание руки (безусловный рефлекс). А ведь за этот короткий миг тепловое воздействие на кожные рецепторы порождает электрический нервный импульс, сигнал успевает пробежать по чувствительным нервным волокнам от пальцев в спинальные ганглии и далее в спинной мозг, пере­ключиться на другие нервные клетки и вернуться к мышцам, отдергивающим руку от горячего предмета (рис. 5.2). Это классический пример контура регуляции, построенного на обратной отрицательной связи элементов управления.

Рис. 5.2. Схема рефлекторной дуги

 

Представление о рефлексах было выдвинуто еще в XVII веке французским натуралистом и философом Р. Декартом, относившим их к автоматическим, непроизвольным действиям. Российский физиолог Иван Михайлович Сеченов в 1863 г. утверждал, что “все акты созна­тель­ной и бессознательной жизни по способу происхождения суть реф­лексы”. В XX веке эта концепция была развита И.П. Павловым в учении о безусловных и условных рефлексах.

О том, как многочисленные и разнообразные рефлексы слагаются в сложные поведенческие акты, как формируются инстинкты и процессы высшей нервной деятельности, мы расскажем в главе 7, посвященной биосоциальной сущности человека. Пока же отметим, что сложную нервную регуляцию, включающую и безусловные, и условные рефлексы, и все проявления высшей нервной деятельности, невозможно создать и поддерживать только на принципах гомеостатической саморегуляции. Это – результат включения в ход развития гомеокинетических процессов, которые и ведут к морфологическим надстройкам, качественно меняющим физиологию нервных центров и сетей.

 

(2) Гуморальная регуляция

Гуморальная регуляция обеспечивается системой эндокринных желез (от греч. endon – внутрь и krino – выделяю) – желез внутренней секреции, выделяющих в кровь разнообразные гормоны (рис. 5.3). Гормоны – это сигнальные молекулы пептидной (белковой) или стероидной (жироподобной) природы, действующие гуморальным путем, т.е. через жидкие среды. Центральная эндокринная железа, гипофиз, выделяет так называемые тропные гормоны (буквально — поворотные, направляющие). Через общий кровоток они воздействуют на местные эндокринные железы, такие как щитовидная, околощитовидная, надпочечники, а также скопления эндокринных клеток в поджелудочной и слюн­­ной железах, семенниках, яичниках, тимусе, плаценте и даже в сердце, желудке, кишечнике, почках. От этих органов многочисленные гормональные “волны” с током крови распространяются к органам-мишеням, взаимодействуют с их клетками через мем­б­ран­­ные рецепторы и активируют либо подавляют процессы роста и функционирования.

Принципиально важно, что работа гипофиза и местных эндокринных желез, в свою очередь, контролируется нервной системой. Нервное возбуждение всегда обора­чи­ва­ется волной гормональных воздействий, которые мобилизуют орга­низм на адекватную, соответствующую возбуждению, реакцию. Фак­ти­чески благодаря связи нервной и эндокринной систем осуществляется единая нейрогуморальная саморегуляция организма.

Рис. 5.3. Нейрогуморальная система регуляции у человека

 

(3) Примеры комплексной нейрогуморальной регуляции

Работа нейрогуморальной регуляторной системы сочетается с работой внутренних органов и мышц, так что представляет собой комплексную рефлекторную реакцию.

Относительно просто, в гомеостатическом режиме, работают системы поддержания физиологических параметров организма, например система регуляции артериального давления. Изме­нение давления крови воспринимается чувствительными нервными окончаниями, расположенными в стенках кровеносных сосудов и реагирующими на их растяжение. Возбуждение передает­ся в нервный центр продолговатого мозга, а обратные сигналы изменяют мышечный тонус сосудов и сердечную деятельность. Одновременно эндокринные железы выделяют необходимые гормоны, корректирующие работу сердечно-сосудистой системы, так что кровяное давление плавно удерживается в пределах нормы.

Сложнее устроены системы регуляции поведения, хотя и здесь в основе лежат прямые и обратные регуляторные связи. В конкретной жизненной ситуации активируется определенная совокупность нервных центров, эндокринных желез, органов и тканей – возникает временная функциональная система, работа которой направлена на достижение полезного приспособительного результата.

Так, при стрессовых реакциях, вызванных чувством страха, перевозбуждением или физической перегрузкой, надпочечники выбрасывают в кровь гормон адреналин, который резко повышает потребление кислорода и концентрацию глюкозы в крови (за счет расщепления гликогена в печени), что, в свою очередь, приводит к увеличению выработки энергии. Происходит учащение сердечного пульса и активация мышечной системы – всё для мобилизации организма на оборону или избежание опасности. Другие системы при этом временно угнетаются: пропадают пищевые реакции, половые рефлексы и др. Пос­ле исчезновения опасности все системы возвращаются в норму.

Интересна и показательна регуляция пищевого поведения у позво­ночных животных и человека (рис. 5.4). В гипоталамусе, отделе головного мозга, связую­щем нервную и эндокринную системы, есть центры голода и насыщения. В крови голодного животного (или человека) возникает недостаток глюкозы, что приводит к раздражению центра голо­да. По нервным связям отдаются команды в мозг, на мышцы, и органи­зу­ется поиск пищи. Параллельно с помощью гормонов из печени и мышц извлекаются резервы глюкозы (за счет расщепления гликогена), которые временно обеспечивают энергетический обмен. Когда пища найдена, съедена и переварена, концентрация глюкозы в крови растет, что приводит к раздра­же­нию центра насыщения, подавлению аппетита и прекращению пита­ния. Когда глюкоза расходуется, ее концентрация в крови вновь понижа­ется, от чего раздражается центр голода. Цикл повторяется.

Рис.5.4. Схема регуляции пищевого поведения у млекопитающих животных

 

У человека пищевое поведение более сложное и разнообразное, так как зависит не только от наличия или отсутствия пищи. Имеет значение социальное положение (фермер, рабочий и бизнесмен будут “искать” пищу в разных местах и разными способами), финансовые возможности (покупка пищи), взаимоотношения с другими людьми (возможность взять пищу или деньги в долг) и т.д.

Таким образом, та или иная функциональная система возникает как временное объединение активностей разных органов посредством многосторонних нейрогуморальных связей. Когда полезный приспособительный результат достигнут, функциональная система “распадается” или перестраивается в соответствии с новыми потребностями организма. В ходе жизнедеятельности периодически формируются и распадаются разнообразные функциональные системы, среди которых одна, как правило, является доминирующей. Таким образом, при ограниченном числе анатомических структур и гормонов число их функциональных комбинаций (функциональных систем), организующих разнообразные поведенческие акты, может быть достаточно большим.

 

(4) Иммунный гомеостаз организма

К числу регуляторных систем, обеспечивающих внутреннее посто­ян­ство организма, следует отнести также иммунную систему. Белковые антитела и клеточные компоненты иммунной системы (лимфоциты, фагоциты) отслеживают и поддерживают генетическую чистоту внутренней среды и тканей организма, устраняя про­никшие вирусы, микробы или собственные мутантные клетки. При инфицировании организма или при паразитарной инвазии, а также при опухолевых новообразованиях иммунная система, если она здорова, дает резкий ответ повышением концентрации защитных белков и клеток. По окончании воспалительной реакции, при выздоровлении организма, иммунные показатели крови приходят в норму. Таким образом, сложный цикл выработки иммунных факторов, их взаимодействие с разнообразными чужеродными антигенами и восстановление нормальной внутренней среды организма представляют звенья саморегулирую­щего­ся механизма.

 

(5) Биоритмы

Обобщая сказанное, заметим, что гомеостаз организма не бывает абсолютным. Любые параметры: температура тела, артериальное давление, пищевое поведение, частота сердечных сокращений, присутствие антител и многие другие – на­хо­дятся в колебательном режиме. Поэтому мы говорим о нали­чии динамического гомеостаза в организме. Такие нормальные колебания функциональных характеристик организма происходят постоянно и называются биоритмами.

Первопричина биоритмов, по-видимому, вытекает из самой при­роды механизма регуляции: прямая и обратная связи замкнуты в цикл, на “оборот” которого требуется определенное время. За это время регулируемая система успевает измениться в ту или иную сторону, что и выражается в колебании ее параметров. Но средний уровень пара­метра должен соответствовать норме, а коридор его колебаний не должен вы­хо­дить за физиологические пределы. Большинство организменных ритмов имеют околосуточную периодичность, есть также месячные, годичные и даже многолетние ритмы. Внутрен­ний механизм, управляющий такими биоритмами, принято называть биологическими часами, что подчеркивает их связь с астрономическим вре­менем.

 

(6) Гомеокинетические процессы

Наконец, поставим вполне ожидаемый вопрос: если в организме столь эффективно работают механизмы саморегуляции, значит ли это, что его гомеостаз бесконечен? Почему рано или поздно наступают необратимые изменения органов? Почему возможна перестройка биоритмов, например, когда мы перелетаем с востока на запад и наоборот? Ответ мы уже знаем: при достаточно длительном и сильном (запороговом) воздействии на структурно-функциональные системы организма, наряду с процессами гомеостатической саморе­гуляции, включаются механизмы гомеокинеза, направленные на перестройку организменных структур и функций. В частности, изменяется уровень активности соответствующих генов, вследствие чего происходит гипертрофия органов, то есть их чрезмерное развитие. Так обеспечивается приспособительная изменчивость клеток, тканей и органов для достижения нового уровня гомеостаза в новых условиях жизнедеятельности. По существу эти гомеокинетические изменения противоположны саморегуляции и гомеостазу, так как они поддерживаются обратными положительными (а не отрицательными) связями.

Гомеокинез – это неизбежный длительный (часто необратимый) ответ на усиление физической нагрузки, на инфекцию, на хроническое стрессовое воздействие. На­пример, в результате постоянных тренировок увеличиваются мышцы спорт­смена, легкие ныряльщика. У тучного человека увеличение нагрузки по прокачива­нию крови через ткани ведет к гипертрофии сердца. Увеличивается и печень при хронических отравлениях (гипертрофия для переработки токсинов). Гомеокинетическая лабильность организма позволяет перестраивать и биоритмы, хотя для этого требуется время.

При постоянном воздействии повреждающих факторов на клетки, например при дей­ствии табачного дыма на легочную ткань, или при ином длительном сти­мулировании регенерации клеток может наступить избыточный рост ткани (образуется опухоль) или, напротив, тканевая дистрофия. Эти при­меры показывают, что механизмы организменного гомеостаза имеют определенный (конечный) запас прочности. Если саморегуляция нарушается, включаются механизмы гомеокинеза, но если и они не справляются, наступают патологические (болезненные) отклонения в состоянии организма. Из этого должны после­до­вать выводы о необходимости бережного отношения к собственному организму. Здоровье человека – это состояние его устойчивого физиологического развития на основе гомеостатических и гомеокинетических процессов.

refac.ru

Концепция саморегуляции живых систем — стр. 6

ТЕМА 4. КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ

26. Саморегуляция и гомеостаз.

27. Внутриклеточная саморегуляция

28. Саморегуляция многоклеточного организма

29. Саморегуляция в экосистемах

САМОРЕГУЛЯЦИЯ И ГОМЕОСТАЗ

Саморегуляция в системе — это внутреннее регулирование процессов с подчинением их единому стабильному порядку. При этом даже в меняющихся условиях среды живая система сохраняет относительное внутреннее постоянство своего состава и свойств — гомеостаз (от греческих homoios — подобный, одинаковый и stasis — состояние).

Действительно, окружающая среда очень переменчива. Изменяются температура, освещенность, влажность. Для животных, да и для растений не регулярна доступность пищи. Донимают паразиты, хищники и просто конкуренты за среду обитания. Тем не менее, животные и растения выносят эти колебания среды, живут, растут, размножаются. Экологические сообщества долгое время сохраняют некий средний состав.

Человек как высший представитель животного царства также поддерживает свой внутренний гомеостаз — благодаря работе многочисленных управляющих механизмов. Так, несмотря на смену дня и ночи, зимы и лета, температура нашего тела поддерживается на одном и том же уровне — около 37 градусов (под мышкой 36,6 градуса). Кровяное давление варьирует в ограниченных пределах, так как регулируется благодаря иннервации стенок сосудов. Солевой состав крови и межклеточных жидкостей, содержание сахаров и других осмотически активных веществ (способных вызвать нежелательное перераспределение воды между структурами организма) также поддерживаются на оптимальных уровнях. Даже простое и, казалось бы, самопроизвольное стояние на двух ногах требует ежесекундной согласованной работы вестибулярного аппарата и многих мышц тела.

Основоположник идеи о физиологическом гомеостазе Клод Бернар (вторая половина XIX века) рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде.

Саморегуляция происходит на всех уровнях организации биологических систем — от молекулярно-генетического до биосферного (об уровнях организации см. тему 1). Поэтому проблема гомеостаза в биологии носит междисциплинарный характер. Внутриклеточный гомеостаз изучают цитология и молекулярная биология, организменный — физиология животных и физиология растений, экосистемный — экология. Конкретные проявления этих механизмов мы рассмотрим ниже. Здесь же отметим, что для поддержания гомеостаза во всех системах используются кибернетические принципы саморегулирующихся систем. Кибернетика — наука об управлении — объясняет принцип саморегуляции системы на основе прямых и обратных связей между ее элементами. Вспомним, что система — это совокупность взаимодействующих элементов. Прямая связь между двумя элементами означает передачу информации от первого ко второму в одну сторону, обратная связь — передача ответной информации от второго элемента к первому. Суть в том, что информационный сигнал — прямой или обратный — изменяет состояние системы, принимающей сигнал. И тут принципиально важно, какой по знаку будет ответный сигнал — положительный или отрицательный. Соответственно и обратная связь будет положительной или отрицательной.

В случае обратной положительной связи первый элемент сигнализирует второму о некоторых изменениях своего состояния, а в ответ получает команду на закрепление этого нового состояния и даже его дальнейшее изменение. Цикл за циклом первый элемент с помощью второго (контрольного) элемента накапливает одни и те же изменения, его состояние стабильно изменяется в одну сторону. Эта ситуация характеризуется как самоорганизация, развитие, эволюция, и ни о какой стабильности системы говорить не приходится. Это может быть любой рост (клетки, организма, популяции), изменение видового состава в сообществе организмов, изменение концентрации мутаций в генофонде популяции, ведущее через отбор к эволюции видов. Естественно, что обратные положительные связи не только не поддерживают, но, напротив, разрушают гомеостаз.

Обратная отрицательная связь стимулирует изменения в регулируемой системе с противоположным знаком относительно тех первичных изменений, которые породили прямую связь. Первоначальные сдвиги параметров системы устраняются, и она приходит в исходное состояние. Цикличное сочетание прямых положительных и обратных отрицательных связей может быть, теоретически, бесконечно долгим, так как система колеблется около некоторого равновесного состояния (рис. 18б). Таким образом, для поддержания гомеостаза системы используется принцип отрицательной обратной связи. Этот принцип широко применяется в автоматике. Так регулируется температура в утюге или холодильнике — с помощью термореле, уровень давления пара в автоклаве — с помощью выпускного клапана, положение судна, самолета, космического корабля в пространстве — с помощью гироскопов. В живых системах универсальный принцип обратной отрицательной связи работает во всех случаях, когда сохраняется гомеостаз.

Далее на конкретных примерах покажем саморегуляцию биологических систем разного уровня сложности.

ВНУТРИКЛЕТОЧНАЯ САМОРЕГУЛЯЦИЯ

В клетке для поддержания гомеостаза используются в основном химические (молекулярные) механизмы регуляции. Наиболее важна регуляция генов, от которых зависит производство белков, в том числе многочисленных и разнообразных ферментов.

Самая простая модель для демонстрации генного гомеостаза — регуляция выработки фермента для расщепления пищевого сахара у кишечной палочки. Эта бактерия является типичным гетеротрофом и поглощает из внешней среды несложные органические вещества, в том числе молочный сахар лактозу. Для расщепления и усвоения лактозы с определенного структурного гена, входящего в состав лактозного оперона (ген вместе с регуляторной областью) синтезируется информационная РНК и, далее, фермент. Если сахар в среде отсутствует, фермент не вырабатывается, а при добавлении сахара активируется ген и идет синтез фермента. Но как только весь сахар будет клеткой использован, ген перестает работать. Как клетка узнает о присутствии сахара и его расходовании? Как оберегает свои гены от бесполезной работы и траты энергии? Регуляция генов у бактерий, как у всех прокариот, в целом организована гораздо проще, чем в эукариотных клетках. Оказывается, лактозный оперон у кишечной палочки работает по принципу отрицательной обратной связи, где в роли регуляторного «клапана» выступает особый участок оперона — оператор, а в роли регулятора сам пищевой субстрат — лактоза. Лактоза, поступившая в клетку, сама раскрывает структурный ген, используя для этого в качестве ключика операторный участок. Исчезновение лактозы автоматически приводит к закрытию гена.

Лактозный оперон — участок молекулы ДНК — состоит из трех частей: промотора, оператора и структурного гена. Промотор — стартовый участок гена, сюда садится фермент РНК-полимераза, ведущий транскрипцию. Оператор — пусковой барьер, в отсутствие лактозы закрытый специальным белком-репрессором. Структурный ген (точнее — здесь находится цепочка, семейство генов) — основной участок ДНК, кодирующий и производящий через иРНК нужный белок-фермент. Пока оператор связан с белком-репрессором, полимераза не может стартовать и структурный ген не работает, синтез фермента отсутствует (см. рис. 19 а). Когда в клетку попадает лактоза, одна ее молекула связывается с репрессором и отнимает его от оператора. Теперь путь полимеразе открыт, идет синтез иРНК (транскрипция) и, далее, синтез соответствующего белка-фермента (трансляция) (рис. 19 б). Ферменты расщепляют поступивший в клетку сахар и в последнюю очередь ту его молекулу, которая связана с репрессором. Но когда будет переварена и эта последняя молекула, белок-репрессор освобождается и вновь блокирует оператор. Производство иРНК и фермента прекращается до поступления новой порции сахара. По своей простоте система регуляции гена концентрацией субстрата похожа на простые технические регуляторы. Напомним, однако, что у эукариот регуляция генной активности более сложная. Она включает возбуждение клеточных рецепторов гормонами или другими биологически активными веществами, запуск каскада реакций вторичных мессенджеров, которые поступают в ядро и избирательно активируют гены.

Другой пример простых саморегулирующихся систем, использующих обратную отрицательную связь, представляют ферментативные цепи, ингибируемые конечным продуктом. Такие цепи обычно локализуются на поверхности внутриклеточных или наружных мембран и проводят комплексную переработку сложного субстрата в простой продукт. Суть регуляции состоит в том, что конечный продукт имеет стереохимическое сродство с первым ферментом. Связываясь с ферментом, продукт ингибирует (подавляет) его активность, так как полностью искажает его третичную структуру. Работает следующий регуляторный цикл. При повышении концентрации конечного продукта выше необходимого уровня его избыток ингибирует ферментную цепь (для этого достаточно остановить самый первый фермент). Ферментация прекращается, а свободный продукт расходуется на нужды клетки. Через некоторое время возникает дефицит продукта, блок с ферментов снимается, цепь активируется, и производство продукта снова растет.

Третий пример- поддержание внутриклеточного осмотического гомеостаза. В сегменте 19 мы говорили о механизме возникновения нервных импульсов и отмечали важную роль ионов натрия, концентрация которых снаружи клетки должна поддерживаться на более высоком уровне, чем внутри. Благодаря натриевым насосам, встроенным в мембрану клетки, удерживается нужный градиент ионов. Как только клетка получает избыток натрия, активируется натриевый насос (его фермент, расщепляющий АТФ и дающий энергию). Натрий выкачивается, его концентрация в клетке падает, что служит сигналом для отключения насоса.

Аналогично в клетках растений с помощью плазмалеммы (наружной мембраны) и вакуолей регулируется состав солей и питательных веществ. Плазмалемма обеспечивает приток в клетку необходимых ионов и воды из внешней среды и выделение балластных и избыточных ионов водорода, натрия, кальция. Мембрана вакуоли регулирует поступление в протоплазму запасных субстратов из вакуоли при их недостатке и удаление в вакуоль — при избытке.

Во всех рассмотренных случаях действует один и тот же принцип — саморегуляция системы на основе обратной отрицательной связи. Заметим, однако, что регулируемые параметры — концентрация солей, питательных веществ, конечного продукта ферментации или продукта генной активности — не бывают абсолютно постоянными, они поддерживаются в допустимых границах. В каждом случае это свои физиологические границы, позволяющие нормально осуществлять клеточные функции. Аналогичный принцип мы увидим и на организменном уровне.

САМОРЕГУЛЯЦИЯ МНОГОКЛЕТОЧНОГО ОРГАНИЗМА

Как мы только что видели, уже на клеточном уровне возникает необходимость поддержания специфических физико-химических условий, отличающихся от условий окружающей среды. У многоклеточных организмов появляется внутренняя среда, в которой находятся клетки различных органов и тканей, происходит усложнение и совершенствование механизмов гомеостаза. В ходе эволюции формируются специализированные органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании гомеостаза.

У морских беспозвоночных имеются механизмы стабилизации объема, ионного состава и рН жидкостей внутренней среды. Для животных, перешедших к жизни в пресных водах и на суше, а также у позвоночных, мигрировавших из пресных вод в море, сформированы механизмы осморегуляции, обеспечивающие постоянство концентрации солей внутри организма.

Наиболее совершенен гомеостаз у млекопитающих, что способствует расширению возможностей их приспособления к окружающей среде. В частности, обеспечивается постоянство объема крови и других внеклеточных жидкостей, концентрации в них ионов, осмотически активных веществ, постоянство рН крови, состава в ней белков, липидов и углеводов. У млекопитающих, а также у птиц, в узких пределах регулируется температура тела — их называют теплокровными животными.

Основную роль в поддержании гомеостаза организма играют нервная и гормональная системы регуляции (см. рис. 17 г).

Наиболее важную интегрирующую функцию выполняет центральная нервная система, особенно кора головного мозга. Большое значение имеет и вегетативная нервная система, в частности ее симпатический отдел — система ганглиев (скоплений нервных клеток), расположенных по бокам позвоночника, в брыжейке и других частях тела (например, солнечное сплетение). Чувствительные нервные волокна охватывают сетью все внутренние органы, кровеносные сосуды, обеспечивая рефлекторную взаимосвязь между ними.

Гормональная регуляция обеспечивается системой эндокринных желез (от греческих endon — внутрь и krino — выделяю) — желез внутренней секреции. Центральная эндокринная железа — гипофиз — находится в голове и имеет прямую связь с головным мозгом (через посредство гипоталамуса), а ее гормоны через кровь воздействуют на все местные эндокринные железы- такие как щитовидная, паращитовидная, надпочечники, а также скопления эндокринных клеток в поджелудочной и слюнной железах, семенниках, яичниках, тимусе, плаценте и даже в сердце, желудке, кишечнике, почках. Выделяемые эндокринными железами гормоны с током крови (гуморально) распространяются ко всем органам-мишеням и участвуют в регуляции их роста (см. сегмент 25) и функционирования. Таким образом, фактически благодаря связи нервной и эндокринной систем осуществляется единая нейрогормональная саморегуляция организма.

В рамках данного пособия придется ограничиться лишь некоторыми примерами, демонстрирующими нейрогормональную регуляцию, без какой-либо претензии на комплексное освещение вопроса.

Примером сложной гомеостатической системы является система обеспечения оптимального артериального давления. Изменение давления крови воспринимается барорецепторами сосудов — чувствительными нервными окончаниями, реагирующими на растяжение стенок сосудов при изменении внутреннего давления. Сигнал передается в сосудистые нервные центры, которые обратным сигналом изменяют тонус сосудов и сердечную деятельность. Одновременно включается система нейрогормональной регуляции и кровяное давление возвращается к норме.

Интересна и показательна регуляция пищевого поведения у позвоночных животных и человека. В гипоталамусе — отделе головного мозга, ответственном за регуляцию вегетативных функций и связующем нервную и эндокринную системы (см. выше) — находятся центры голода и насыщения. В крови голодного животного (или человека) возникает недостаток глюкозы — простейшего сахара (углевода), который всасывается всеми клетками и расходуется для получения энергии (см. сегмент 13). Низкая концентрация глюкозы в крови приводит к раздражению центра голода. По нервным связям отдаются команды в мозг, на мышцы, и организуется поиск пищи. Когда пища найдена, включаются механизмы питания, пищеварения и всасывания продуктов в кровь. При этом белки перевариваются (расщепляются) до аминокислот, липиды до жирных кислот, а сложные углеводы до простых сахаров, в том числе глюкозы. Концентрация глюкозы в крови растет, что приводит к раздражению центра насыщения, далее к подавлению аппетита и прекращению питания. Когда глюкоза расходуется, ее концентрация в крови вновь понижается, отчего раздражается центр голода. Цикл повторяется. Поскольку гипоталамус связан и с нервными центрами, и со всей эндокринной системой, цикл пищевого поведения синхронизирован также с нервно-рефлекторной и гуморальной регуляцией желез пищеварительного тракта: выделяется слюна, желудочный сок, ферменты поджелудочной железы и кишечника, мобилизуется перистальтика.

На основе процессов саморегуляции происходит морфологическая и функциональная гипертрофия органов в ответ на усиление нагрузки, на инфекцию, стрессовое воздействие. В результате постоянных тренировок увеличиваются мышцы спортсмена, легкие ныряльщика. Увеличение нагрузки по прокачиванию крови ведет к гипертрофии сердца у тучного человека. Увеличивается и печень у больного человека. Характерная функциональная реакция развивается в ответ на гипоксию (недостаток кислорода): учащение пульса и увеличение числа эритроцитов, приводящие вместе к более быстрому обороту газов через организм. Или — реакция испуга, страха: выброс в кровь стрессового гормона адреналина ведет к повышению потребления кислорода, повышению концентрации глюкозы в крови, учащению пульса и мобилизации мышечной системы — все для мобилизации организма на оборону или избежание опасности. Другие системы при этом угнетаются — пропадают пищевые реакции, половые рефлексы и др. После исчезновения опасности все системы возвращаются в норму.

Механизм обратной отрицательной связи вовлечен в поддержание постоянства числа клеток в обновляющихся тканях, таких как кровь, кишечный или кожный эпителий. В этих тканях имеется резерв недифференцированных клеток (например, красный костный мозг для крови), которые многократно делятся, дифференцируются, работают, стареют и отмирают. Считают, что зрелые клетки выделяют вещества, ингибирующие молодые делящиеся клетки. Выстраивается цепь взаимозависимых реакций: при избытке зрелых клеток продукция ингибитора высока и размножение клеток подавляется; уменьшение числа зрелых клеток в результате их естественной гибели сопровождается снижением концентрации ингибитора в среде; блок клеточных делений снимается; размножение молодых клеток усиливается; число зрелых клеток восстанавливается. Далее вновь возрастает продукция ингибитора и цикл повторяется. Общее число зрелых клеток в ткани колеблется около некоторого среднего уровня, резко не снижается и не повышается. По механизму передачи сигнала здесь мы имеем гуморальную систему, ингибитор работает как внутритканевой «гормон».

К числу регуляторных систем, обеспечивающих внутреннее постоянство организма, кроме нервной и эндокринной, следует отнести иммунную систему, которая отслеживает и поддерживает генетическую чистоту внутренней среды и тканей организма, устраняя проникшие вирусы, микробы или собственные мутантные клетки. Состав и принципы функционирования иммунной защиты были рассмотрены в сегменте 18. Теперь можно добавить, что сложный цикл выработки неспецифических и специфических защитных факторов (различных белков, в том числе антител), их взаимодействие с разнообразными чужеродными агентами (антигенами) и восстановление нормальной внутренней среды организма представляют звенья саморегулирующегося механизма. Это очень сложный, многокомпонентный механизм, в котором не сразу видны отдельные узлы саморегуляции, так как над ними или параллельно с ними работают другие управляющие механизмы.

Как и в случае с внутриклеточной регуляцией, мы должны заметить, что гомеостаз организма не бывает абсолютным. Любые параметры: температура тела, артериальное давление, пищевое поведение, частота сердечных сокращений, число клеток в ткани и многие другие — находятся в колебательном режиме. Это вытекает из самой природы механизма регуляции — прямая и обратная связи замкнуты в цикл, на оборот которого требуется определенное время. За это время регулируемая система успевает измениться в ту или иную сторону, что и выражается в колебании ее параметров. Но средний уровень параметра должен соответствовать норме, а коридор его колебаний не должен выходить за физиологические пределы. Если это все же происходит, говорят о патологических (болезненных) отклонениях в состоянии организма.

Нормальные колебания функциональных характеристик организма происходят постоянно и называются биоритмами. Скорость синтеза белков в клетке колеблется в околочасовом (1,5 — 2 часа) ритме, большинство организменных ритмов имеют околосуточную периодичность, есть месячные, годичные и даже многолетние ритмы. Внутренний механизм, управляющий ритмами, принято называть биологическими часами, что подчеркивает связь биоритмов с астрономическим временем. Но заметим, что подавляющее большинство биоритмов являются наведенными, они сформированы под действием абиотических (небиологических) ритмов внешней среды. Это очевидно связанные с вращением Земли околосуточные ритмы, связанные с лунным циклом месячные ритмы и т. д. Поэтому биоритмы могут перестраиваться, и это происходит, например, когда мы перелетаем с востока на запад и наоборот. Но для этого требуется время, так как в один и тот же цикл (особенно суточный) бывают включены и жестко связаны друг с другом многие частные ритмы. И вообще колебательное состояние системы является наиболее устойчивым. Именно поэтому колебательное состояние внутренней среды организма выступает как важный фактор поддержания гомеостаза.

САМОРЕГУЛЯЦИЯ В ЭКОСИСТЕМАХ

Общее представление о структуре экологической системы было изложено при характеристике уровней организации жизни (тема 1). Напомним, что полноценная экосистема представляет из себя биогеоценоз — неразрывное единство биоценоза и биотопа. Биоценоз — это сложное сообщество из популяций организмов разных видов — животных, растений, грибов, микроорганизмов, населяющих определенный ареал. При этом популяцией обозначают совокупность особей одного вида, обитающих на данном ареале. Биотопом называют всю совокупность факторов неживой среды, ареала, на котором обитает данный биоценоз.

Итак: биоценоз + биотоп = биогеоценоз (экосистема).

Прежде чем рассматривать механизмы саморегуляции в экосистемах, надо дать характеристику экологических факторов, без чего не возможно понять сути внутрисистемных экологических отношений.

Все условия среды, включая живые и неживые объекты, от которых зависит жизнь отдельного организма или популяции, обозначаются понятием экологические факторы. Для конкретных популяций разные факторы могут быть необходимыми, вредными, безразличными (нейтральными). Экологические факторы делят на абиотические и биотические. Кроме того, в особую группу выделяют антропогенные факторы, порожденные производственной деятельностью человека.

Абиотические факторы — факторы неживой природы, в основном климатические. Сюда относятся свет, тепло («температура»), влажность, содержание в почве химических элементов, соленость морской воды, уровень радиации и др.

Биотические факторы — это влияние одних живых организмов на другие. В зависимости от характера отношений различают несколько типов биотических факторов: конкуренцию, хищничество, паразитизм, симбиоз.

1. Конкуренция — за среду обитания, пищу, свет, половых партнеров и другие условия. Конкуренция может быть внутривидовой — между особями одного вида и межвидовой — между особями разных видов животных или растений, обитающих на одном ареале и требующих одинаковых условий жизни. Конкуренция — обязательная форма отношений у рядом проживающих организмов и составляет одну из форм борьбы за существование.

2. Хищничество — это способ добывания пищи и питания животных (редко — растений), при котором они ловят и поедают других животных. Жертва-хищник — одна из самых распространенных связей внутри сообщества. Внутривидовое хищничество известно как канибализм, распространено у хищных насекомых, пауков, рыб. Среди растений известны водная пузырчатка, болотные росянка, жирянка и другие, питающиеся насекомыми. Жертва захватывается быстрым смыканием листьев или лепестков, переваривается выделяемыми наружу ферментами и кислотами, и потом простые органические вещества всасываются клетками эпидермиса растения. Так пополняется недостаток азота в тканях растения.

3. Паразитизм (от греческого parasitos — нахлебник) — форма отношений, когда один организм (паразит) использует другого (хозяина) в качестве среды обитания и (или) источника пищи. Система паразит-хозяин представляет результат совместной эволюции двух видов (коэволюция) с сохранением равновесия, при выживании обоих. Паразиту не выгодно, чтобы хозяин погиб. Паразитизм распространен во всех царствах, типах, классах — как внутри этих таксонов, так и между ними. Вирусы, не имея своих метаболических систем, паразитируют в клетках бактерий, грибов, растений, животных. Паразитические бактерии поселяются в тканях грибов, растений, в кишечнике и других полостях животных (однако большинство бактерий ведет свободный образ жизни — в почве, воде, гниющих остатках). Грибы могут паразитировать на растениях и животных. Растения бывают паразитами растений же (повилика), а животные — животных. Среди животных наиболее известны паразитические черви (у человека — аскарида, острицы, цепень и др.) и насекомые (вши, клопы и др.).

4. Симбиоз (от греческого symbiosis — совместная жизнь) — взаимовыгодное сожительство. Примерами симбиоза являются клубеньковые бактерии и бобовые растения (бактерии получают от растения пищу, растение от бактерии — усвоенный азот), грибы и корни растений, термиты и живущие в их кишечнике жгутиковые простейшие, переваривающие клетчатку. Аналогичные отношения имеются у человека с кишечной микрофлорой — разнообразными бактериями, переваривающими определенные компоненты пищи. Нарушение этого симбиоза — дисбактериоз — ведет к расстройствам кишечника, нарушениям пищеварения.

Любой экологический фактор имеет меру интенсивности: тепловой фактор выражают температурой среды и измеряют в градусах Цельсия или Кельвина; освещенность измеряют в люксах или количестве световых часов в сутках, световых дней в году; интенсивность инвазии паразитами выражают в количестве паразитов на одну зараженную особь и т. д.

Для каждого организма, популяции существуют пределы выносливости того или иного экологического фактора — от минимальной до максимальной интенсивности, в пределах которых организмы сохраняют жизнеспособность. Более узкую зону, в которой условия среды наиболее благоприятны, составляет оптимум экологического фактора. В зависимости от природы фактора кривая степени его благоприятности имеет разный вид. Для таких факторов, как радиация или наличие паразитов зона оптимума начинается от нуля (то есть лучше, когда их нет совсем). Для влажности воздуха, освещенности, температуры и т. п. степень благоприятности фактора описывается кривой нормального распределения (колоколообразная кривая), отставленной от абсолютного нулевого значения. То есть влага, свет, тепло необходимы организмам в определенном диапазоне интенсивностей.

Каждый биологический вид по каждому экологическому фактору имеет свои пределы. Бурый медведь по многим факторам имеет широкие пределы выносливости: переносит большие колебания температуры, влажности, неприхотлив в выборе пищи — всеяден. Арктические рыбы, напротив, имеют очень узкие температурные пределы — от -2 до +2 градусов Цельсия. Среди растений есть светолюбивые, световыносливые и тенелюбивые.

Выяснив природу экологических факторов и характер их воздействия на организмы, можно перейти к рассмотрению сути вопроса — об экологической саморегуляции.

Находясь под действием самых разнообразных экологических факторов, хорошо сбалансированный по составу биоценоз тем не менее саморегулируется и поддерживает внутреннее постоянство — гомеостаз. Состояние гомеостаза выражается в том, что:

refdb.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о