Разное

Примеры излучений – Что такое излучение в физике? Определение, особенности, применение излучения в физике. Что такое тепловое излучение в физике

Содержание

Физика процесса излучения. Примеры излучения в быту и природе

Излучение — это физический процесс, результатом которого является передача энергии с помощью электромагнитных волн. Обратный излучению процесс называется поглощением. Рассмотрим этот вопрос подробнее, а также приведем примеры излучения в быту и природе.

Физика возникновения излучения

Любое тело состоит из атомов, которые, в свою очередь, образованы ядрами, заряженными положительно, и электронами, которые образуют электронные оболочки вокруг ядер и заряжены отрицательно. Атомы устроены таким образом, что они могут находиться в разных энергетических состояниях, то есть обладать как большей, так и меньшей энергией. Когда атом имеет наименьшую энергию, то говорят о его основном состоянии, любое другое энергетическое состояние атома называется возбужденным.

Существование различных энергетических состояний атома связано с тем, что его электроны могут располагаться на тех или иных энергетических уровнях. Когда электрон переходит с более высокого уровня на более низкий, то атом теряет энергию, которую он излучает в окружающее пространство в виде фотона — частицы-носителя электромагнитных волн. Наоборот, переход электрона с более низкого на более высокий уровень сопровождается поглощением фотона.

Перевести электрон атома на более высокий энергетический уровень можно несколькими способами, которые предполагают передачу энергии. Это может быть как воздействие на рассматриваемый атом внешнего электромагнитного излучения, так и передача ему энергии механическим или электрическим способами. Кроме того, атомы могут получать, а затем выделять энергию в результате химических реакций.

Электромагнитный спектр

Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.

Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон — это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой). Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.

Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.

Тепловое излучение тел

Всякое тело, которое имеет некоторую отличную от абсолютного нуля температуру, излучает энергию, в этом случае говорят о тепловом или температурном излучении. При этом температура определяет как электромагнитный спектр теплового излучения, так и количество испускаемой телом энергии. Чем больше температура, тем большую энергию излучает тело в окружающее пространство, и тем сильнее его электромагнитный спектр смещается в высокочастотную область. Процессы теплового излучения описываются законами Стефана-Больцмана, Планка и Вина.

Примеры излучения в быту

Как выше было сказано, энергию в виде электромагнитных волн излучает абсолютно любое тело, однако видеть невооруженным глазом этот процесс можно не всегда, поскольку температуры окружающих нас тел, как правило, слишком маленькие, поэтому их спектр лежит в низкочастотной невидимой для человека области.

Ярким примером излучения в видимом диапазоне является электрическая лампа накаливания. Проходя по спирали, электрический ток разогревает вольфрамовую нить до 3000 К. Такая высокая температура приводит к тому, что нить начинает испускать электромагнитные волны, максимум которых приходится на длинноволновую часть видимого спектра.

Еще один пример излучения в быту — микроволновая печь, которая испускает микроволны, невидимые для человеческого глаза. Эти волны поглощаются объектами, содержащими воду, тем самым увеличивая их кинетическую энергию и, как следствие, температуру.

Наконец, примером излучения в быту в инфракрасном диапазоне является радиатор батареи отопления. Его излучения мы не видим, но чувствуем это тепло.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда — Солнце. Температура на поверхности Солнца около 6000 К, поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

fb.ru

Физика процесса излучения. Примеры излучения в быту и природе

Излучение — это физический процесс, результатом которого является передача энергии с помощью электромагнитных волн. Обратный излучению процесс называется поглощением. Рассмотрим этот вопрос подробнее, а также приведем примеры излучения в быту и природе.

Физика возникновения излучения

Любое тело состоит из атомов, которые, в свою очередь, образованы ядрами, заряженными положительно, и электронами, которые образуют электронные оболочки вокруг ядер и заряжены отрицательно. Атомы устроены таким образом, что они могут находиться в разных энергетических состояниях, то есть обладать как большей, так и меньшей энергией. Когда атом имеет наименьшую энергию, то говорят о его основном состоянии, любое другое энергетическое состояние атома называется возбужденным.

Перевести электрон атома на более высокий энергетический уровень можно несколькими способами, которые предполагают передачу энергии. Это может быть как воздействие на рассматриваемый атом внешнего электромагнитного излучения, так и передача ему энергии механическим или электрическим способами. Кроме того, атомы могут получать, а затем выделять энергию в результате химических реакций.

Электромагнитный спектр

Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.

Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон — это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой). Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.

Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.

Тепловое излучение тел

Всякое тело, которое имеет некоторую отличную от абсолютного нуля температуру, излучает энергию, в этом случае говорят о тепловом или температурном излучении. При этом температура определяет как электромагнитный спектр теплового излучения, так и количество испускаемой телом энергии. Чем больше температура, тем большую энергию излучает тело в окружающее пространство, и тем сильнее его электромагнитный спектр смещается в высокочастотную область. Процессы теплового излучения описываются законами Стефана-Больцмана, Планка и Вина.

Примеры излучения в быту

Как выше было сказано, энергию в виде электромагнитных волн излучает абсолютно любое тело, однако видеть невооруженным глазом этот процесс можно не всегда, поскольку температуры окружающих нас тел, как правило, слишком маленькие, поэтому их спектр лежит в низкочастотной невидимой для человека области.

Ярким примером излучения в видимом диапазоне является электрическая лампа накаливания. Проходя по спирали, электрический ток разогревает вольфрамовую нить до 3000 К. Такая высокая температура приводит к тому, что нить начинает испускать электромагнитные волны, максимум которых приходится на длинноволновую часть видимого спектра.

Еще один пример излучения в быту — микроволновая печь, которая испускает микроволны, невидимые для человеческого глаза. Эти волны поглощаются объектами, содержащими воду, тем самым увеличивая их кинетическую энергию и, как следствие, температуру.

Наконец, примером излучения в быту в инфракрасном диапазоне является радиатор батареи отопления. Его излучения мы не видим, но чувствуем это тепло.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда — Солнце. Температура на поверхности Солнца около 6000 К, поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

autogear.ru

Излучение — что это такое?

Каждый человек ежедневно сталкивается с различными видами излучения. Для тех, кто мало знаком с физическими явлениями, плохо представляет, что означает данный процесс и откуда он происходит.

Излучение в физике – это формирование нового электромагнитного поля, образующегося при реакции частиц, заряженных электрическим током, другими словами, это определенный поток электромагнитных волн, которые распространяются вокруг.

Свойства процесса излучения

Данную теорию заложил еще Фарадей М. в XIX веке, а продолжил и развил Максвелл Д. Именно он смог придать всем исследованиям строгую математическую формулу.

Максвелл смог вывести и структурировать законы Фарадея, из них он определил, что все электромагнитные волны перемещаются с одинаковой скоростью света. Благодаря его труду некоторые явления и действия в природе стали объяснимы. Вследствие его выводов стало возможным появление электро, радио техники.

Заряженные частицы определяют характерные особенности излучения. Также на процесс оказывает сильное влияние взаимодействие заряженных частиц с магнитными полями, к которым она стремится.

К примеру, при ее взаимодействии с атомными веществами меняется скорость движения частицы, она сначала замедляется, а далее перестает двигаться дальше, в науке данное явление называется тормозное излучение.

Можно встретить разные виды данного явления, одни созданы самой природой, а другие с помощью вмешательства человека.

Однако, сам закон изменения типа излечения один для всех. Электромагнитное поле отделено от заряженного элемента, но при этом движется с одинаковой быстротой.

Характеристика поля напрямую зависит от того, с какой скоростью происходит само движение, а также какой размер имеет заряженная частица. Если при движении она не сталкивается ни с чем, то ее скорость не изменяется и, следовательно, она не создает излучения.

А вот, если при движении она сталкивается с разными частицами, то скорость видоизменяется, часть собственного поля отсоединяется, и превращается в свободное. Получается, что формирование магнитных волн происходит только при изменении скорости частицы.

Различные факторы могут повлиять на скорость, отсюда и формируются разные типы излучения, к примеру, это может быть тормозное. Также существуют дипольное, мультипольное излучения, они образуются, когда частица внутри себя меняет, имеющуюся структуру.

Важно, что поле всегда имеет импульс, энергию.

Так как при взаимодействии позитрона и электрона возможно образование свободных полей, при этом заряженные частицы сохраняют импульс, энергию, что передается электромагнитному полю.

Источники и виды излучения

Электромагнитные волны изначально существовали в природе, в процессе развития и создания новых законов физики появились новые источники излучения, которые называются искусственными, созданные человеком. К такому виду можно отнести рентгеновские лучи.

Для того, чтобы ощутить на себе данный процесс не нужно выходить из квартиры. Электромагнитные волны окружают человека повсюду, достаточно включить свет или зажечь свечу. Поднеся руку к источнику света можно ощутить тепло, которое излучают предметы. Такое явление называется тепловым излучением.

Однако, существуют и другие его виды, к примеру, в летние месяцы, отправляясь на пляж, человек получает ультрафиолетовое излучение, которое исходит от солнечных лучей.

Каждый год на диспансеризации проходят такую процедуру как флюорография, для того, что бы выполнить медицинское исследование используется специальное рентгеновское оборудование, которое тоже дает излучение.

В медицине также используется инфракрасное излучение, чаще всего применяют при физиотерапии больных. Также такой вид используется в детских лазерах. Также при лечении некоторых заболеваний применяется лучевая терапия. Такой тип называется гаммой, так как длина волн весьма коротка.

Такое явление возможно благодаря полному совпадению заряженных частиц, которые взаимодействуют с источником света.

Многие слышали о радиации, это тоже один из видов излучения.

Она образуется при распаде химических элементов, которые являются радиоактивными, то есть процесс происходит из-за того, что расщепляется ядра частиц на атомы, и они излучают радиоактивные волны. Радио, телевидение для своего вещания используют радиоволны, излучаемые ими волны, обладают большой длиной.

Возникновение излучения

Диполь электрический является самым простым элементом, производящий явление. Однако при процессе создается определенная система, которая состоит из двух частиц, колеблющееся по-разному типу.

Если частицы по прямой, при движении на встречу друг другу, то происходит отсоединение части электромагнитного поля, и образуются заряженные волны.

В физике такое явление называется неизотопное, так как возникающая энергия не обладает одинаковой силой. В данном случае не важна скорость и расположение элементов, так как действительные излучатели должны иметь большое количество элементов, которые обладают зарядом.

Исходное состояние, возможно изменить, если одноименные зарядные частицы начать стягивать к ядру, где происходит распределение зарядов. Такое соединение можно рассматривать как электрический диполь, так как получившаяся система будет полностью электронейтрального типа.

Если отсутствует диполь, то возможно создать процесс с помощью квадруполя. Так же в физике выделяют более сложную систему для получения излучения – это мультиполь.

Для образования таких частиц необходимо использовать контур с током, тогда при движении возможно возникновение квадрупольного излучения. Важно учитывать, что интенсивность магнитного намного меньше, чем электрического типа.

Реакция излучения

В процессе взаимодействия частица теряет часть своей собственной энергии, так как при движении на нее влияет определенная сила. Она в свою очередь влияет на скорость потока волн, при ее действии действующая сила движения замедляется. Такой процесс называется радиационное трение.

При данной реакции сила процесса будет весьма незначительной, однако скорость будет весьма высока и приближена, к скорости света. Данное явление можно рассмотреть на примере нашей планеты.

В магнитном поле содержится довольно много энергии, поэтому электроны, которые излучаются из космоса, не могут долететь до поверхности планеты. Однако существуют частицы космических волн, которые могут дойти до земли. У таких элементов должна быть высокая потеря собственной энергии.

Также выделяются размеры области пространства, это значение является важным при излучении. Данный фактор влияет на формирование электромагнитного поля излучения.

В этом состоянии движения частицы не большие, но быстрота отсоединения поля от элемента, равна свету, и получается, что процесс создания будет весьма активен. И как следствие получаются короткие электромагнитные волны.

В том случае, когда скорость движения частицы высока, и приблизительно равна свету, то время отсоединения поля увеличивается, данный процесс длится довольно долго и, следовательно, электромагнитные волны обладают высокой длиной. Так как их путь занимал больше обычного, и образование поля происходило довольно продолжительное время.

В квантовой физике также используется излучение, но при рассмотрении используются совершено другие элементы, это могут быть молекулы, атомы. В данном случае, явление излучения рассматривается и подчиняется законам квантовой механики.

Благодаря развитию науки, получилось возможным вносить поправки и изменять характеристики излучения.

Многие исследования показали, что излучения могут негативно влиять на человеческий организм. Все зависит от того, какой вид излучения, и как долго человек ему подвергался.

Ни для кого не секрет, что при химической реакции и распаде ядерных молекул, может наступить лучевое излучение, которое является опасным для живых организмов.

При их распаде может происходить моментальное и довольно сильное облучение. Окружающие предметы также могут производить излучение, это могут быть сотовые телефоны, микроволновые печи, ноутбуки.

Данные предметы посылают, как правило, короткие электромагнитные волны. Однако в организме может происходить накопление, что влияет на здоровье.

Похожие статьи

Загрузка…

otravlenie103.ru

Неионизирующие излучения. Виды и характеристика излучений

Повсюду нас окружают электромагнитные поля. В зависимости от своего волнового диапазона, они по-разному могут действовать на живые организмы. Более щадящими считаются неионизирующие излучения, однако и они порой небезопасны. Что это за явления, и какое влияние они оказывают на наш организм?

Что такое неионизирующие излучения?

Энергия распространяется в виде мелких частиц и волн. Процесс её испускания и распространения и называется излучением. По характеру воздействия на предметы и живые ткани различают два основных его вида. Первое – ионизирующее, представляет собой потоки элементарных частиц, которые образуются в результате деления атомов. Оно включает радиоактивное, альфа-, бета-, гамма-, рентгеновское, гравитационное излучение и лучи Хокинга.

Ко второму виду излучений относятся неионизирующие излучения. По сути, это электромагнитные волны, длина которых составляет больше 1000 нм, а количество выделенной энергии меньше 10 кэВ. Оно действует в виде микроволн, в результате выделяя свет и тепло.

В отличие от первого вида, данное излучение не ионизирует молекулы и атомы вещества, на которое воздействует, то есть не разрывает связи между его молекулами. Конечно, и здесь есть свои исключения. Так, отдельные виды, например, УФ-лучи могут ионизировать вещество.

Виды неионизирующих излучений

Электромагнитное излучение представляет гораздо более широкое понятие, чем неионизирующее. Высокочастотные рентгеновские и гамма-лучи также являются электромагнитными, однако они более жесткие и ионизируют вещество. Все остальные виды ЭМИ относятся к неионизирующим, их энергии не хватает для того, чтобы вмешаться в структуру материи.

Наибольшей длиной среди них обладают радиоволны, чей диапазон колеблется от сверхдлинных (более 10 км) до ультракоротких (10 м – 1 мм). Волны остальных ЭМ излучений составляют меньше 1 мм. После радиоизлучения идет инфракрасное или тепловое, длина его волн зависит от температуры нагревания.

Неионизирующими также являются видимое световое и ультрафиолетовое излучения. Первое часто называется оптическим. Своим спектром оно очень близко к инфракрасным лучам и образуется при нагревании тел. Ультрафиолетовое излучение приближено к рентгеновскому, поэтому может обладать способностью к ионизации. При длине волн от 400 до 315 нм оно распознается человеческим глазом.

Источники

Неионизирующие электромагнитные излучения могут быть как природного, так и искусственного происхождения. Одним из главных природных источников является Солнце. Оно посылает все виды излучения. Полному их проникновению на нашу планету препятствует земная атмосфера. Благодаря озоновому слою, влажности, углекислому газу действие вредоносных лучей сильно смягчается.

Для радиоволн естественным источником может служить молния, а также космические объекты. Тепловые инфракрасные лучи может испускать любое нагретое до нужной температуры тело, хотя основное излучение исходит от искусственных объектов. Так, основными его источниками являются обогреватели, горелки и обыкновенные лампочки накаливания, которые присутствуют в каждом доме.

Радиоволны передаются по любым электрическим проводникам. Поэтому искусственным источником становятся все электроприборы, а также приборы для радиосвязи, например, мобильные телефоны, спутники и т. д. Ультрафиолетовые лучи распространяют специальные люминесцентные, ртутно-кварцевые лампы, светодиоды, эксилампы.

Влияние на человека

Электромагнитное излучение характеризуется длиной волны, частотой и поляризацией. От всех этих критериев и зависит сила его воздействия. Чем волна длиннее, тем меньше энергии она переносит на объект, а значит, является менее вредной. Наиболее губительно действуют излучения в дециметрово-сантиметровом диапазоне.

Неионизирующие излучения при длительном воздействии на человека способны причинить вред здоровью, хотя в умеренных дозах они могут быть полезны. Ультрафиолетовые лучи могут вызвать ожоги кожи и глазной роговицы, вызвать различные мутации. А в медицине с их помощью синтезируют в коже витамин D3, стерилизуют оборудование, обеззараживают воду и воздух.

В медицине инфракрасное излучение используют для улучшения метаболизма и стимуляции кровообращения, дезинфекции пищевых продуктов. При излишнем нагреве это излучение способно сильно иссушить слизистую глаза, а на максимальной мощности — даже разрушить молекулу ДНК.

Радиоволны используют для мобильной и радиосвязи, навигационных систем, телевидения и других целей. Постоянное действие радиочастот, исходящих от бытовых приборов, может повысить возбудимость нервной системы, ухудшить работу мозга, негативно сказаться на сердечно-сосудистой системе и детородной функции.

fb.ru

Физика процесса излучения. Примеры излучения в быту и природе

Излучение — это физический процесс, результатом которого является передача энергии с помощью электромагнитных волн. Обратный излучению процесс называется поглощением. Рассмотрим этот вопрос подробнее, а также приведем примеры излучения в быту и природе.

Физика возникновения излучения

Любое тело состоит из атомов, которые, в свою очередь, образованы ядрами, заряженными положительно, и электронами, которые образуют электронные оболочки вокруг ядер и заряжены отрицательно. Атомы устроены таким образом, что они могут находиться в разных энергетических состояниях, то есть обладать как большей, так и меньшей энергией. Когда атом имеет наименьшую энергию, то говорят о его основном состоянии, любое другое энергетическое состояние атома называется возбужденным.

Существование различных энергетических состояний атома связано с тем, что его электроны могут располагаться на тех или иных энергетических уровнях. Когда электрон переходит с более высокого уровня на более низкий, то атом теряет энергию, которую он излучает в окружающее пространство в виде фотона — частицы-носителя электромагнитных волн. Наоборот, переход электрона с более низкого на более высокий уровень сопровождается поглощением фотона.

Перевести электрон атома на более высокий энергетический уровень можно несколькими способами, которые предполагают передачу энергии. Это может быть как воздействие на рассматриваемый атом внешнего электромагнитного излучения, так и передача ему энергии механическим или электрическим способами. Кроме того, атомы могут получать, а затем выделять энергию в результате химических реакций.

Электромагнитный спектр

Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.

Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон — это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой). Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.

Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.

Тепловое излучение тел

Всякое тело, которое имеет некоторую отличную от абсолютного нуля температуру, излучает энергию, в этом случае говорят о тепловом или температурном излучении. При этом температура определяет как электромагнитный спектр теплового излучения, так и количество испускаемой телом энергии. Чем больше температура, тем большую энергию излучает тело в окружающее пространство, и тем сильнее его электромагнитный спектр смещается в высокочастотную область. Процессы теплового излучения описываются законами Стефана-Больцмана, Планка и Вина.

Примеры излучения в быту

Как выше было сказано, энергию в виде электромагнитных волн излучает абсолютно любое тело, однако видеть невооруженным глазом этот процесс можно не всегда, поскольку температуры окружающих нас тел, как правило, слишком маленькие, поэтому их спектр лежит в низкочастотной невидимой для человека области.

Ярким примером излучения в видимом диапазоне является электрическая лампа накаливания. Проходя по спирали, электрический ток разогревает вольфрамовую нить до 3000 К. Такая высокая температура приводит к тому, что нить начинает испускать электромагнитные волны, максимум которых приходится на длинноволновую часть видимого спектра.

Еще один пример излучения в быту — микроволновая печь, которая испускает микроволны, невидимые для человеческого глаза. Эти волны поглощаются объектами, содержащими воду, тем самым увеличивая их кинетическую энергию и, как следствие, температуру.

Наконец, примером излучения в быту в инфракрасном диапазоне является радиатор батареи отопления. Его излучения мы не видим, но чувствуем это тепло.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда — Солнце. Температура на поверхности Солнца около 6000 К, поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

Источник

1ku.ru

применение в медицине и в жизни, источники, свойства, кем и когда открыто :: SYL.ru

Вы окружены электромагнитными волнами. Они везде! От света, который вы можете видеть, до ультрафиолета, проходящего через ваше окно от солнца. Даже если бы вы попробовали, вы не смогли бы избежать волн. Но опять же, зачем вам это нужно? Зачем чего-то избегать, если это можно применять? Что такое видимое излучение, кем и когда открыто? Как оно воздействует и где применяется?

Световые волны

Термин «световые волны» может использоваться по-разному разными людьми. Физики склонны небрежно использовать его на одном уровне с электромагнитными. Итак, в чем разница? Электромагнитные волны (или электромагнитное излучение) представляют собой волны, создаваемые колебательными магнитными и электрическими полями, и включают радиоволны, микроволны, инфракрасные, видимые, ультрафиолетовые, рентгеновские и гамма-лучи. Как и все волны, они несут энергию, и эта энергия может быть очень высокой интенсивности (например, электромагнитные волны, которые мы получаем от солнца).

При взгляде на спектр видимого света синим концом электромагнитного спектра является высокая частота, высокая энергия и короткая длина волны. Красный конец электромагнитного спектра представляет собой низкочастотную, малую энергию и большую длину волны. Свет это лишь часть электромагнитного спектра, часть, которую могут видеть наши глаза. Каковы сферы применения видимого излучения, кроме той, которая позволяет человеку видеть все вокруг?

Различные типы световых волн

Радиоволны находятся на красном конце электромагнитного спектра. Красный конец также является наименьшей энергией, самой низкой частотой и самой большой длиной волны. Радиоволны в основном используются в коммуникациях, для передачи сигналов от одного места к другому. Радиостанции используют радиоволны, как и сотовые телефоны, телевизоры и беспроводные сети. Из-за большой длины волны радиоволн они могут отскочить от ионосферы Земли, позволяя радиостанциям передавать свои радиопередачи на большие расстояния, не находясь в прямой видимости всех своих слушателей.

Микроволны являются ближайшими к красному концу спектра. Вероятно, вы можете догадаться, что микроволны используются в наших кухонных микроволновках для приготовления пищи. Они имеют достаточно высокую энергию, чтобы увеличить движение молекул в вашей пище, не ионизируя атомы. Это важно, потому что это означает, что пища будет только нагреваться, – ее химический состав останется прежним.

Инфракрасный имеет длину волны немного больше, чем наши глаза могут обнаружить. Тело человека имеет температуру, которая производит излучение в этой части спектра, и поэтому инфракрасные детекторы могут использоваться как камеры ночного видения. ИК-порт также используется пультом дистанционного управления для отправки сигналов на телевизоры и другое аудио- или видеооборудование.

Видимый свет – это часть электромагнитного спектра, который наши глаза могут обнаружить, и та часть, с которой мы больше всего знакомы в нашей повседневной жизни. Он считается находящимся в «середине» электромагнитного спектра, хотя это довольно произвольно.

Ультрафиолет (часто сокращается до УФ) направляется в синюю сторону электромагнитного спектра, который является высокоэнергетической и более короткой волновой стороной. Ультрафиолетовое излучение слишком короткое в длине волны, чтобы наши глаза могли его обнаружить. УФ-волны являются достаточно высокой энергией, поэтому они способны ионизировать атомы, разрушая молекулярные связи и даже молекулы ДНК. По этой причине УФ вызывает солнечный ожог и даже рак кожи. Большинство вредных ультрафиолетовых волн Солнца поглощается атмосферой (особенно азотом) и озоновым слоем, но достаточно большая его часть попадает на землю. Поэтому стоит быть осторожными и использовать солнцезащитный крем и солнечные очки.

Рентгеновское излучение имеет очень высокую энергию и подобно УФ может ионизировать атомы в теле и наносить урон. Однако на правильных длинах волн и в правильных количествах их можно использовать безопасно, не повреждая ткани тела, чтобы создать, например, снимки грудной клетки. Также рентгеновские телескопы полезны при исследовании астрофизики.

Что такое видимый свет и как его можно использовать?

Каково применение видимого излучения? Чтобы ответить на этот вопрос, нужно сначала дать определение этому термину. Видимый свет – это электромагнитное излучение, вызванное фотонами, поражающими поверхность и поглощаемыми электронами материала, при этом излучается цвет, который имеет наименьшую скорость поглощения. Например, огнетушители красные, потому что частицы краски поглощают зеленую частоту лучше, чем красную.

340-750 нм – длина волны видимого спектра. Благодаря этим знаниям можно создавать диоды, которые излучают свет на определенных частотах. Одним из применений видимого света является светофор. Видимый свет – любая электромагнитная волна (или фотон как квантовый эквивалент), которая лежит в области синего и красного цветов спектра. Он имеет множество применений. Видимый свет используется как источник света, который можно увидеть человеческим глазом. Это лазеры, свободная космическая связь, оружие, сигнализация, освещение.

Он также используется в качестве сигнатурной эмиссии некоторых атомных и химических реакций, позволяя идентифицировать присутствие различных материалов, поэтому используется в судебной экспертизе и медицине. Видимый свет – это электромагнитное излучение в диапазоне частот от 430 до 770 ТГц, соответствующее длинам волн от 390 до 700 нм. Это диапазон электромагнитного излучения, который может быть получен глазами животных и человека. Эволюция, вероятно, оборудовала животных органом для получения этого диапазона излучения. Видимый свет представляет собой максимальную интенсивность солнечного излучения, и он довольно коротковолновой. Также он не повреждает живые клетки, в отличие от, например, УФ, рентгеновских или гамма-лучей.

Видимый свет – это электромагнитная волна

Обычно наблюдаемый свет представляет собой комбинацию различных цветных световых волн. Эти разные цвета света обусловлены разными частотами света. Видимый свет имеет много применений в оптике, материаловедении, конденсированном веществе, лазерных науках, разных отраслях промышленности, которые используют этот свет для экспериментов и каждый день. Примерами являются экраны проекторов, лазерный луч, используемый в шоу, или указатель, камера и так далее.

Свет – это часть электромагнитного спектра, к которому чувствительны наши глаза. Главное применение видимого света – это способность видеть вещи своими глазами. Излучение спектра передается волнами или частицами на разных длинах волн и частотах. Этот широкий диапазон длин волн известен как электромагнитный спектр. Этот спектр классически разделен на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты. Наши глаза могут обнаружить только крошечную часть электромагнитного спектра, называемую видимым светом.

Так работают лампочки: электрический ток нагревает ламповую нить примерно до 3000 градусов, и она светится горячим светом. Поверхность Солнца составляет около 5600 градусов и выделяет много света. Белый свет фактически состоит из целого ряда цветов, смешанных друг с другом. Это можно увидеть, если пропустить белый свет через стеклянную призму. Компакт-диски считываются лазерным излучением. Лазеры используются в компакт-дисках и DVD-плеерах, где свет отражается от крошечных ямок на диске, при этом происходит преобразование в звук или данные. Лазеры также используются в лазерных принтерах и в системах прицеливания самолетов.

Опасности видимого света

Видимые световые волны – единственные электромагнитные волны, которые может увидеть человеческий глаз. Люди видят их как цвета радуги, каждый из которых имеет свою длину волны. Красный имеет самую длинную, а фиолетовый – самую короткую. Когда все волны видны вместе, они создают белый свет. Конусы в глазах являются приемниками для этих крошечных волн видимого света. Солнце является естественным источником видимых световых волн, и глаза видят отражение этого солнечного света от окружающих объектов. Цвет объекта, который видит человек, это цвет отраженного света. Все остальные цвета поглощаются.

Слишком большое излучение может повредить сетчатку глаза. Это может произойти, если вы посмотрите на что-то очень яркое, например на Солнце. Хотя повреждение можно вылечить, но если воздействие видимого излучения является сильным и постоянным, это может иметь необратимые последствия.

Видимое излучение: источники, свойства, применение

Лампочки – еще один источник видимых световых волн. А еще лазеры. Кто их открыл? Альберт Эйнштейн (1917) предложил механизм стимулированного излучения – принцип действия лазера. Открытие спонтанного излучения Эйнштейна (процесс, происходящий в атомах) побудило его развить идею стимуляции светодиодов. В 1950-х годах исследователи предложили конструкции для устройства, которое стимулировало бы излучение для усиления света. Первый лазер был построен Теодором М. Майманом В 1960 году.

Как производится лазер?

Искусственный процесс включает в себя следующее:

  • Источник энергии.
  • Активная среда.
  • Оптическая полость.

Активная среда поглощает энергию из источника, сохраняет ее и высвобождает ее как свет. Что-то из этого света запускает другие атомы, чтобы высвободить их энергию, поэтому к запущенному добавляется еще больше света. Зеркала в конце оптической полости отражают свет обратно в активную среду, и процесс начинается снова, заставляя свет усиливаться и вызывая его часть в виде узкого луча – лазера. Для увеличения светового излучения в возбужденном состоянии должно быть больше атомов, чем было изначально. Это называется инверсией данных. Это состояние не происходит при нормальных условиях. Поэтому этому процессу должны помочь искусственные технологии, а не природа.

Лекарственное средство

Применение видимого излучения в медицине – это обычное дело. Лазеры используются в микрохирургических процедурах, таких как выполнение небольших точных разрезов, операций на печени и капиллярной хирургии, что приводит к небольшой потере крови. Лазеры также используются в офтальмологии (удаление катаракты и коррекция зрения), дерматологии (удаление татуировок и шрамов), стоматологии (очищение полости), онкологии (лечение рака кожи).

Какой можно привести пример применения видимого излучения в медицине? Светотерапия также используется для облегчения сезонного аффективного расстройства, регулирует ваши внутренние биологические часы (суточные ритмы) и влияет на настроение. Терапевтическое применение света и цвета также исследуется во многих больницах и исследовательских центрах по всему миру. Результаты пока показывают, что полный спектр, ультрафиолетовый, цветной и лазерный свет могут иметь терапевтическое значение для ряда условий – от хронической боли и депрессии до иммунных расстройств.

Видимое излучение: кем и когда открыто?

Первым объяснил возникновение спектра (этот термин был употреблен впервые в 1671 году) видимого излучения Исаак Ньютон в своем труде «Оптика» и Иоганн Гете в своей работе «Теория цветов». Что такое видимое излучение? Кем и когда открыто? Также похожими исследованиями занимался Роджер Бэкон, который наблюдал за спектром в стакане воды задолго до Ньютона и Гете.

Применение в жизни видимого излучения дает возможность видеть что-либо вообще. Свет движется, как волна, отскакивая от объектов, чтобы люди могли их видеть. Без этого все были бы в полной темноте. Но в физике свет может относиться к любой электромагнитной волне: радиоволнам, микроволнам, инфракрасному, видимому, ультрафиолетовому, рентгеновскому излучению или гамма-лучам.

www.syl.ru

Виды радиоактивных излучений

Навигация по статье:


Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют — ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация — это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Виды радиации

Альфа, бета и нейтронное излучение — это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение — это излучение энергии.


Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение — это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.


Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение — это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.


Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета излучение с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа излучение представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.


Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение — это энергетическое электромагнитное излучение в виде фотонов.

Гамма излучение сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения — это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.


Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение — это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

doza.pro

Отправить ответ

avatar
  Подписаться  
Уведомление о